The Radiological Cleanup of Enewetak Atoll

Note: For information related to claims, call the Department of Veterans Affairs (VA) at 800-827-1000. For all other information, call the Nuclear Test Personnel Review (NTPR) Program at 800-462-3683.

Historical Background

The Enewetak Atoll has a total land surface area of about 2.75 square miles consisting of 40 islands surrounding a central 388 square mile lagoon in the Pacific Ocean. Following World War I, the Treaty of Versailles awarded control of the atoll to Japan with the stipulation that the atoll could not be fortified. During World War II, Japan used the atoll as a strategic base in violation of the Treaty. In 1944, the U.S. military captured the atoll and used it as a support and staging area. After Japan surrendered, the United Nations agreed to the U.S. trusteeship of the atoll, which placed the atoll under U.S. administration, legislation, and jurisdiction.

The Trinity Test, the first nuclear weapon detonation, in Alamogordo, New Mexico and then the use of nuclear weapons in Hiroshima and Nagasaki, Japan ushered in the nuclear age. With the advent of these new weapons of war, additional testing and development was necessary. The Enewetak Atoll was a desirable testing location since:

1. It was under the control of the U.S.
2. The area was uninhabited or subject to evacuation without imposition of unnecessary hardship on a large number of inhabitants.
3. It was within 1,000 miles of the nearest B-29 aircraft base, as it was expected that one test nuclear device was to be delivered by air.
4. It was free from storms and extreme cold.
5. It has a protected harbor at least six miles in diameter thereby being large enough to accommodate both target and support vessels.
6. It was away from cities or other population concentrations.
7. The local winds were predictably uniform from sea level to 60,000 feet.
8. The water currents also were predictable and not adjacent to inhabited shorelines, shipping lanes, and fishing areas which avoided contaminating populaces and their food supply.

The residents of the Enewetak Atoll had to be evacuated before the initiation of the nuclear weapons testing. To minimize the hardship to the residents, the U.S. Navy constructed a small village on the Ujelang atoll, 124 miles southwest of Enewetak and transported the residents to their new location on December 21, 1947.

The nuclear tests were primarily conducted in the atoll’s northwestern quadrant to minimize radioactive contamination to the base camps on the southern islands. In 1958, the U.S. ceased nuclear testing on Enewetak in response to a trilateral testing moratorium between the United Kingdom (U.K.), Soviet Union (U.S.S.R.) and U.S. This moratorium was short lived, but in 1963, the Limited Test Treaty was signed by the U.K., U.S.S.R., and U.S. that officially and effectively banned atmospheric weapons testing by the partner states.
In the early 1970s, the U.S. decided that control of the atoll was no longer necessary due to the cessation of nuclear weapons testing and decided it would be best to return control to the Trust Territory of the Pacific Islands. The U.S. felt there was a moral and potentially legal obligation to remediate the atoll due to the debris, unexploded munitions, dilapidated buildings and radiological contamination. To evaluate the radiological conditions on the atoll an extensive pre-cleanup survey was performed in late 1972 through early 1973. Congress directed DOD to manage the cleanup operation and the Department of Energy to provide technical support. This three year remediation project commenced in May 1977 and ended on May 13, 1980 when the final 45 cleanup personnel departed the Enewetak Atoll.

Today, all of the atoll islands and the lagoon are accessible with the exception of Runit Island. Runit Island was quarantined due to residual sub-surface soil contamination and the use of “Cactus Crater”. The crater was formed during a May 1958, 18 kiloton surface detonation on the northern tip of Runit Island. It now contains radiologically contaminated waste from the atoll cleanup. The concrete-lined crater containing waste was entombed by a concrete dome, completed in spring 1980.

In 1986, the U.S. government officially returned the atoll to the Marshall Island Republic (MIR) sovereignty and created a partnership with the MIR to provide continued annual personnel monitoring. Islanders maintaining a typical islander lifestyle that includes locally grown or caught food are found uniformly to have very little to no intake of residual radionuclides and their annual radiation doses are below U.S. averages.

Summary of the Radiological Cleanup of Enewetak Atoll

The DOD organized three separate efforts in support of the cleanup: Removal and lagoon-dumping of uncontaminated debris and structures, removal and crater-entombment of radiologically contaminated debris and structures, and excision and crater-entombment of radiologically contaminated soil from the islands.

The islands of the atoll were classified based on intended use which determines the acceptable soil contamination level, see Table 1. The contamination criterion was established to limit the annual lung and bone doses to a resident living the typical island lifestyle to 0.010 and 0.013 rem\(^1\) per year, respectively.

Radiological surveys were used to identify which islands required decontamination and to develop the remediation and radiological safety plans. The soil plutonium concentration level was evaluated to determine the necessity and extent of soil remediation, which were divided into three categories.

- Level 1: Plutonium concentration was greater than 400 pCi/g – soil removal by scraping.
- Level 2: Plutonium concentration was between 40 and 400 pCi/g – individual case consideration.
- Less than 40 pCi/g did not require cleanup.

Table 1. Island contamination criteria based on intended use

<table>
<thead>
<tr>
<th>Intended Use</th>
<th>Contamination Criteria</th>
<th>Number of Islands</th>
</tr>
</thead>
</table>

\(^1\) A rem is a radiation protection unit of measure that quantifies the risk of biological effects resulting from exposure to ionizing radiation. Ionizing radiation is any radiation (gamma, x-ray, beta, neutron, or alpha) capable of displacing electrons from atoms or molecules, thereby producing ions. According to the National Council on Radiation Protection and Measurements (NCRP, Report No. 160, Table 1.1), the general U.S. population receives about 0.62 rem per year from natural background radiation sources (radon, cosmic rays, and rocks) and man-made radiation sources (medical diagnostic x-rays and consumer products). As a basis of comparison, a standard diagnostic chest x-ray delivers a radiation dose of about 0.02 rem.
The radiological soil surveys identified 12 islands with plutonium concentrations greater than 40 pCi/g; however, not all of these islands required remediation since they were not intended for residential use. The Planned Use Condition, Final Qualification Condition and Final Soil Survey results are recorded in Table 2.

Table 2. Radiologically contaminated islands with respective contamination levels

<table>
<thead>
<tr>
<th>Island Name</th>
<th>Code Name</th>
<th>Average Final Soil Survey (pCi/g)</th>
<th>Planned Use Condition</th>
<th>Final Qualification Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taiwel</td>
<td>Percy</td>
<td>6</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Bokenelab</td>
<td>Mary</td>
<td>19</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Mary's Daughter</td>
<td>Fern</td>
<td>139</td>
<td>Food Gathering</td>
<td>Food Gathering</td>
</tr>
<tr>
<td>Lujor</td>
<td>Pearl</td>
<td>63</td>
<td>Agricultural</td>
<td>Agricultural</td>
</tr>
<tr>
<td>Pearl's Daughter</td>
<td>Gwen</td>
<td>123</td>
<td>Food Gathering</td>
<td>Food Gathering</td>
</tr>
<tr>
<td>Aej</td>
<td>Olive</td>
<td>54</td>
<td>Agricultural</td>
<td>Agricultural</td>
</tr>
<tr>
<td>Billae</td>
<td>Wilma</td>
<td>3</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Alembel</td>
<td>Vera</td>
<td>7</td>
<td>Agricultural</td>
<td>Residential</td>
</tr>
<tr>
<td>Elle</td>
<td>Nancy</td>
<td>52</td>
<td>Food Gathering</td>
<td>Agricultural</td>
</tr>
<tr>
<td>Boken</td>
<td>Irene</td>
<td>80</td>
<td>Food Gathering</td>
<td>Agricultural</td>
</tr>
<tr>
<td>Bokoluo</td>
<td>Alice</td>
<td>140</td>
<td>Food Gathering</td>
<td>Food Gathering</td>
</tr>
<tr>
<td>Bokombako</td>
<td>Belle</td>
<td>95</td>
<td>Food Gathering</td>
<td>Food Gathering</td>
</tr>
<tr>
<td>Mijikadrek</td>
<td>Kate</td>
<td>20</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Kidrinen</td>
<td>Lucy</td>
<td>77</td>
<td>Food Gathering</td>
<td>Agricultural</td>
</tr>
<tr>
<td>Louj</td>
<td>Daisy</td>
<td>43</td>
<td>Food Gathering</td>
<td>Agricultural</td>
</tr>
<tr>
<td>Bokinwotme</td>
<td>Edna</td>
<td>33</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Edna's Daughter</td>
<td>-</td>
<td>103</td>
<td>Food Gathering</td>
<td>Food Gathering</td>
</tr>
<tr>
<td>Kirunu</td>
<td>Clara</td>
<td>65</td>
<td>Food Gathering</td>
<td>Agricultural</td>
</tr>
<tr>
<td>Elelron</td>
<td>Ruby</td>
<td>8</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Aomon</td>
<td>Sally</td>
<td>7.5</td>
<td>Agricultural</td>
<td>Residential</td>
</tr>
<tr>
<td>Sally's Child</td>
<td>Zoe</td>
<td>21</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Bijire</td>
<td>Tilda</td>
<td>7</td>
<td>Agricultural</td>
<td>Residential</td>
</tr>
<tr>
<td>Enjebi</td>
<td>Janet</td>
<td>20</td>
<td>Residential</td>
<td>Residential</td>
</tr>
<tr>
<td>Runit</td>
<td>Yvonne</td>
<td>Permanently Quarantined</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Radiologically contaminated islands with respective contamination levels (cont'd)
<table>
<thead>
<tr>
<th>Island Name</th>
<th>Code Name</th>
<th>Average Final Soil Survey (pCi/g)</th>
<th>Planned Use Condition¹</th>
<th>Final Qualification Condition¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boko</td>
<td>Sam</td>
<td>0.3</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Munjor</td>
<td>Tom</td>
<td>0.3</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Inedral</td>
<td>Uriah</td>
<td>0.2</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td></td>
<td>Van</td>
<td>0.2</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Jinedrol</td>
<td>Alvin</td>
<td>0.3</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Ananij</td>
<td>Bruce</td>
<td>0.2</td>
<td>Agricultural</td>
<td>Residential</td>
</tr>
<tr>
<td>Jinimi</td>
<td>Clyde</td>
<td>0.15</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Japtan</td>
<td>David</td>
<td>0.2</td>
<td>Residential</td>
<td>Residential</td>
</tr>
<tr>
<td>Jedrol</td>
<td>Rex</td>
<td>0.2</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Biken</td>
<td>Leroy</td>
<td>2.5</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Kidrenen</td>
<td>Keith</td>
<td>0.3</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Boken</td>
<td>Irwin</td>
<td>0.4</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Ribewon</td>
<td>James</td>
<td>0.2</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Mut</td>
<td>Henry</td>
<td>0.4</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Ikuren</td>
<td>Glenn</td>
<td>0.2</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Bokandretok</td>
<td>Walt</td>
<td>0.2</td>
<td>Food Gathering</td>
<td>Residential</td>
</tr>
<tr>
<td>Medren</td>
<td>Elmer</td>
<td>0.3</td>
<td>Residential</td>
<td>Residential</td>
</tr>
<tr>
<td>Enewetak</td>
<td>Fred</td>
<td>0.5</td>
<td>Residential</td>
<td>Residential</td>
</tr>
<tr>
<td>Lojwa</td>
<td>Ursula</td>
<td>1.9</td>
<td>Agricultural</td>
<td>Residential</td>
</tr>
</tbody>
</table>

Radiation Protection Standards

The primary radiological contaminants of the soil on the northern islands were long-lived transuranic elements (plutonium and americium) and relatively short-lived radioisotopes cesium-137, strontium-90 and cobalt-60. The principle purpose of the cleanup was to reduce the long-lived transuranic elements to levels that did not pose a long-term hazard to the returning people of Enewetak.

Due to extensive surveys providing an understanding of the radiological environment of each of the islands, rigid control of access to contaminated islands was employed to minimize exposure to radiation. The personnel working on the contaminated islands were supervised by the Radiation Control Division and under constant surveillance of the Field Radiation Support Teams. These workers were tracked by island access cards, wore dosimetry, and in the likelihood of internal contamination, received a bioassay. The Field Radiation Support Teams issued personal protective equipment and established monitoring requirements based on potential exposure environments, conditions and work assignments.

Radiation Doses

Due to the time between the last nuclear test at the atoll and the start of the Enewetak Cleanup Project, much of the short-lived radioisotopes had decayed to levels that resulted in extremely low dose rates. Approximately 68% of the 12,248 film badge readings showed no detectable exposures with less than 0.03% exceeding 0.07 rem. 7,519 thermoluminescent dosimeters were also issued, 99.97% of the readings were less than 0.042 rem.

Air samples were taken to monitor for the possibility of internal radiological contamination due to inhalation. Of the 5,204 air samples collected, 95% of the samples were less than 1% of the established limits with none of the samples exceeding 10% of the limits. To verify workers in contaminated areas were not internally contaminated, bioassay (urine) samples were collected and analyzed for plutonium intake. The samples were
overwhelmingly (99.97%) negative, which indicates that the controls in place were effective in protecting the workers from internal contamination.

November 2016