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not change fundamentals, such as 
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advantage over defense and human 

James Bret Michael, Naval Postgraduate School operators continuing to be the pri-
David B. Thaw, University of Pittsburgh mary locus of control. We provide 

a taxonomy of issues for assessing 
the effects of AI on cybersecurity. Recent advances in artificial intelligence AI deployments should be viewed 
as rich sociotechnical systems challenge classical models of productivity by 
rather than mere technical tools. 

increasing the scale, complexity, and range of When assessing their behaviors, 
it is critical to include people, poli-

tasks that can be meaningfully automated, cies, and interactions that comprise 
a broader system and to situate including those associated with cybersecurity.  specific tools within that context. 
This systemic framing provides the 

A rtificial intelligence (AI) refers to technologies best view to understand how to control new failure modes. 
for automating tasks. Increased automa- We conclude with three principles for practitioners as they 
tion drives a race for new capabilities, pre- learn to operate in the evolving world of AI. 
senting new opportunities and challenges AI affords attackers opportunities to further automate 

their tasks, such as discovery, prioritization, and exploita-
tion of vulnerabilities. For example, contemporary data 
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sensitive and protected information 
from seemingly nonsensitive data 
with less need for input from human 
analysts. Likewise, defenders can lever-
age automation for monitoring, sur-
veillance, and other defensive activi-
ties. For example, management tasks, 
the maintenance of situational aware-
ness, threat-indicator triage, and the al-
location of human resources can be 
automated and improved. 

As AI-enhanced defenses improve, 
there will be reciprocal improvements in 
AI-enabled offensive capabilities—a 
cat-and-mouse game that already defines 
the domain. As automation increases, 
human operators balance against each 
other using ever-more-sophisticated 
technology, with attendant changes 
in operating paradigms, such as the 
shift from information superiority to 
decision superiority.1 Higher-tempo 
and more complex operations must be 
balanced by more nimble governance, 
faster decision making, and new poli-
cies that protect security and resilience 
of the information infrastructure. 

At the nation-state level, AI is an in-
strument of great power competition, 
as evidenced by investments by the 
United States, Russia, and China in re-
search, development, and the deploy-
ment of military and civilian appli-
cations of AI. However, nation-states 
need to balance what is technologically 
possible with what is permissible (that 
is, law) and preferable (that is, policy).2 

Will the advantage in the future of cy-
berspace be driven by technological 
superiority; the integration of tech-
nology into existing conventional and 
cyberoperations; or the integration of 
technology, policy, and doctrine? 

What will the practice of cyberse-
curity look like in a more automated 
world? What benefits will cybersecu-
rity practitioners accrue from adopting 
AI technology? What new threats arise 
in highly automated systems, and what 
countermeasures are appropriate to 

manage them? How much does au-
tomation increase the level of con-
trol that human operators have over 
their domain? Does automation give a 
human-in-the-loop greater situational 
awareness and a stronger ability to 
project desires into actions, or does 
it reduce humans to components in a 
system, who struggle to keep up with 
the rapid pace and increased complex-
ity of machine-driven activities? Will 
human decision makers understand 
and rely on recommendations from AI 
systems or will inscrutability in ma-
chine-generated insights limit their 
application and utility? Can automa-
tion improve decision making, or will 
it amplify failings—biases, preconcep-
tions, and foibles of existing systems— 
as much as it enhances capabilities? 

Answering these questions depends 
on the context for use of automation 
in cybersecurity. Although AI has 
transformative effects, many dynam-
ics will remain as they are today: core 
threats and vulnerabilities endure; 
cyberconflict remains primarily asym-
metric. This article provides a frame-
work to explore this space of new 
risks and opportunities. 

TRANSFORMATION AND RISK 
To leverage new capabilities success-
fully, we need to understand what AI 
can achieve and where it will solve 
existing problems as well as where its 
limitations will limit applicability or 
require alternative solutions. It is also 
necessary to understand why and how 
technological advances augment the 
existing capacity of both attackers and 
defenders so that there is a clear link 
between the new technology and its 
purported effects. 

AI technologies have increased the 
breadth of tasks that can be automated 
by technological systems. These ad-
vances create excitement about the 
ways that novel software-driven au-
tomation will change the world. And 

while these tools indeed hold great 
opportunity, that potential leads too 
often to failed promises, technologi-
cal underperformance, unsubstanti-
ated claims, or illusory visions of an 
imagined future where new technol-
ogy wholly solves existing problems. 
These misconceptions and overambi-
tious visions often depend, ironically, 
upon solving problems for which the 
technology is unsuited or in some 
cases provably inadequate. AI has 
gone through many iterations of the 
hype cycle.3 

AI is best conceptualized as a col-
lection of technological advances that 
broaden the set of tasks that can be 
automated usefully—the scaling-up 
of data storage and computational 
resources coupled with long-known 
tools such as machine learning, auto-
mated entity extraction, and the use of 
structured knowledge bases and infer-
ence rules to compute beyond what a 
programmer can write into an explicit 
program. Automation embodies tasks 
in tools and rules. AI systems discover 
these rules during their training or 
operation instead of relying on subject 
matter experts to develop the rules 
and on engineers and programmers to 
encode the rules into machines. Auto-
mation enables a spectrum of auton-
omy, the property that a system takes 
actions or influences the world on its 
own, without additional input from 
human operators. Automated systems 
may be highly autonomous or tightly 
teamed with a human: some auto-
mated systems exist purely to support 
human decision making (for example, 
a system that ranks detected alerts 
for response by a security operations 
center); others operate primarily unat-
tended and reify their decisions with-
out human intervention (for example, 
a firewall or spam filter). 

Automation can enable humans to 
replace repetitive or high-vigilance 
tasks with more time for strategic 
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thinking. However, automation comes 
with risks, taking humans out of the 
immediate operation of systems and 
thus potentially lowering their situa-
tional awareness. Additionally, automa-
tion may relocate or outright remove 
less apparent embedded discretionary 
tacit decision making (for example, a 
police officer not issuing a ticket for 
someone who broke the speed limit by 
executing an emergency maneuver to 
avoid a crash). Whether the resulting 
human–machine partnering is more 
resilient and capable than the human 
or the machine alone depends heavily 
on the context of the AI application, 
the design of the entire system and of 
the automated tools, and the way these 
tools are situated in surrounding sys-
tems that contain and govern them. 
Establishing that AI is dependable— 
trusted to be safe, reliable, effective, 
free of bias, and sufficiently under-
standable to the humans affected by it 
for the purpose for which it is put into 
use—requires thinking about both 
the technology and its context, which 
in turn shapes system behavior. How-
ever, users often apply systems in ways 
the systems’ designers did not intend 
or envision, which in turn can neces-
sitate changes in law, policy, doctrine, 
strategy, and tactics. 

By viewing the entire system-in-
context as the locus of function and 
the technical tools as components, we 
can come to a clearer understanding 
of the capabilities, limitations, and 
transformative effects of AI technolo-
gies and how they will change cyber-
security practice and address cyberse-
curity risk. Systems have not only AI 
components but also human compo-
nents, explicitly programmed soft-
ware components, and nonsoftware 
components (that is, hardware). Inter-
actions between components drive the 
most change in both capacity and risk 
from AI—the broadening of what can 
be automated. 

For cybersecurity automation, this 
means tasks will increasingly be situ-
ated in increasingly capable tools, leav-
ing operators more time to consider 

their actions while quickening the 
pace of decision making and execu-
tion of plans. Individuals and teams of 
operators could become more efficient 
and effective, performing existing 
tasks in less time with higher fidel-
ity and gaining the ability to perform 
new tasks. However, as tasks are auto-
mated, operators become less familiar 
with details, less aware of the specifics 
of their actions, and less able to view or 
understand the internal workings of 
the automation, raising issues of de-
pendability and trust. Poor design of 
automation can also lead to task over-
load for the operator, introducing risk 
and potentially negating some of the 
benefits of automation. 

For attackers, automation can help 
synthesize new vulnerabilities;4 scan 
for existing vulnerabilities; identify 
pivot opportunities during an attack; 
or suggest and prioritize targets to an 
attacker based on their value, ease of 
engagement, or risk of exposure. Fur-
thermore, the increased volume of 
data and sophistication of data anal-
ysis approaches means that attackers 
and analysts can often make infer-
ences about data they do not yet have 
access to reveal its contents with high 
probability or even certainty. While 
inference attacks are not new,5 the ca-
pacity of modern methods to automate 
them is concerning. For example, a 
Massachusetts Institute of Technol-
ogy graduate student was able to take 
anonymized medical records and news 
stories and identify which record be-
longed to the governor of Massachu-
setts despite the fact that the records 
contained no explicit information that 
singled out an individual.6 Reidentifi-
cation has been automated to the point 
that it can be performed on entire data 
sets, such as the Netflix Prize data set, 
which contained the movie ratings of 
500,000 subscribers,7 yielding signif-
icant amounts of protected informa-
tion about individuals. Moreover, auto-
mated tools can help attackers conduct 
shaping operations at scale, such as in-
fluencing social media with bots.8 The 
expansion of automation exacerbates 

the asymmetry of cyberattacks and 
online influence operations. 

Automation also helps defenders. 
New tools and analytics make it easier 
to separate outlying or anomalous ac-
tivity from normal background; auto-
mated tools can triage system alerts to 
raise to human operators only the items 
that are most critical or actionable.9 

Furthermore, tools can make decisions 
about system management, identifying 
which systems have patchable vulnera-
bilities and which of those patches are 
unlikely to be disruptive.10 Together, 
such tools refocus human work, elimi-
nating repetitive incident management 
or system-state tracking tasks, and fa-
cilitating more time for better tool de-
velopment and other tasks. 

The same tools that automate the 
work of attackers and defenders, along 
with AI tools used outside of cyber-
security, also present new risks. The 
most examined of these is the problem 
of adversarial AI in which inputs to AI 
systems are modified by an adversary 
to trigger incorrect behavior.11 But AI 
systems also suffer from all of the sup-
ply-chain risks of other software. Ad-
ditionally, sophisticated automation 
drives novel risks driven by its com-
plexity, which can limit the efficacy 
of traditional approaches to ensuring 
that a system meets its mission-effec-
tiveness and dependability goals. 

In addition, automated systems 
often suffer the risk of “poisoning,” 
where changes to the underlying data 
lead to changes in the decision rules, 
possibly in targeted ways. Such poison-
ing could cause the system to misrep-
resent the world to decision makers 
or fail to detect or properly interpret 
actions of an adversary. For example, 
an adversary who feeds large num-
bers of legitimate emails into an email 
system may become trusted and thus 
better able to insert spam or malware 
links at a later time. Alternatively, poi-
soning could simply destroy a system’s 
effectiveness or perceived legitimacy: 
rather than exfiltrating data, an at-
tacker might instead modify finan-
cial records in an attempt to affect 
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corporate reporting and decision 
making or to make profitable trades on 
the company’s stock. 

As in other domains of adversarial 
competition, advances in defensive 
technology lead to advances in attack 
sophistication, which, in turn, require 
more sophisticated defensive technol-
ogy. We do not see the introduction of 
AI into cybersecurity changing this 
fundamental security dilemma ei-
ther for traditional software or for 
AI systems. 

ANALYZING AI IN 
CYBERSECURITY 
We offer a framework for understand-
ing the way that AI systems will affect 
cybersecurity. Our framework sets out 
a number of functional tradeoffs that 
break down AI application risks versus 
benefits to make tradeoffs legible to 
decision makers. 

Doctrine versus generalization: 
Following rules is not the 
same as knowing things 
All automation operates according to 
a fixed set of rules, determined in ad-
vance of when the automation is de-
ployed. When such rules are situated 
in software, they can be difficult for 
those outside the software develop-
ment process to understand, leading to 
opacity in the AI system; this is not the 
same as arguing that the system op-
erates other than according to a fixed 
rule.12 In traditional software appli-
cations, the set of rules is specified as 
a set of requirements and a design by 
human programmers and product 
managers and then explicitly encoded 
into software. AI systems, by contrast, 
use traditional software to knit to-
gether components that specify their 
decision rules implicitly (often as the 
set of rules that maximize some goal). 
Whether we are talking about early AI 
systems that used knowledge bases 
and the rules of logic to combine asser-
tions about the world into new claims 
or the newest deep learning natural 
language models that digest huge 
volumes of data into the equivalent 

of a programmed function, the end re-
sult is always a component that maps 
inputs to outputs in a well-defined 
way—a rule. 

The idea of operating a process ac-
cording to a fixed rule is powerful—it 
enables operation at a speed and scale 
that could not be achieved by manu-
al-only means, broadening the reach 
of sophisticated functionality, such as 
by scouring threat intelligence feeds 
from thousands of sources to extract 
patterns that distinguish a group of 
threat actors from the background din 
of Internet and host-system behavior. 

Rules allow greater speed and scale 
but also create blindness around be-
havior not considered when they were 
formulated. For this reason, automated 
systems can fail when taken out of the 
context for which they were designed. 
For example, a computer vision system 
that identifies dog breeds in photos is 
unlikely to perform well at cat breed 
identification without substantial ad-
aptation. Similarly, rules that work 
well on laboratory data may only do 
so because of quirks in that data. Ad-
versaries who can respond to the rules 
can learn to fool the target system, as 
in the ongoing battle between better 
spam filtering rules and the resulting 
changes in the behavior of spammers. 
Similar dynamics exist in malware 
development, identity theft, and other 
adversarial situations. 

Thus, the system’s stakeholders 
need to know whether the rules their 
system embodies are suitable to the 
task for which the system is put to 
use. For traditional software-driven 
automation, there are a number of ap-
proaches to verification and validation 
(V&V), but V&V itself is challenging to 
do well.13 

For AI systems, rules are generated 
implicitly from information built into 
the system. Hence, although it can be 
hard to state the rules by which an AI 
system operates, it cannot be said that 
such systems are built or put to use 
without requirements and specifica-
tions. Although V&V techniques for 
AI systems are not as well developed 

as for traditional software systems, it 
is eminently possible to assess the fit-
ness of AI systems for specified tasks 
and goals as they are designed and 
built.12 

We may prefer more flexible stan-
dards that can be applied ex post 
rather than needing to define an ex 
ante rule.14 Think of building an au-
tomated speed enforcement camera. 
If the threshold for enforcement is 
driving at a given speed, a safe driver 
traveling just over the limit will re-
ceive a citation, while an unsafe driver 
traveling well under the limit will not. 
Should the enforcement threshold be 
the same as the legal speed limit or 
slightly higher to accommodate this 
disparity? Or should a speed limit be 
determined according to standards, 
flexible decision criteria a decision 
maker must apply and that bind that 
decision maker to specific desiderata 
(for example, “no faster than is safe for 
the conditions”) but that do not bind 
that decision maker to specific out-
comes? Standards bind the structure 
of decisions but do not mechanically 
translate fact patterns into decisions, 
and so they do not translate well to 
automated systems. And what of en-
forcement discretion, where legiti-
mate grounds for exceeding the limit 
may justify noncitation? This enforce-
ment discretion provides a low-cost, 
low-friction mechanism for the sys-
tem to make space for interpretation 
of the rules, while ex post adjudication 
can be extraordinarily costly. 

Automation versus autonomy: 
Human–machine teams versus 
direct-effect systems 
Freeing up humans makes them more 
capable if systems are designed prop-
erly but also can lead operators astray 
and introduce new failure modes and 
safety hazards, as Tesla and Uber learned 
from mishaps with automated driving. 
The same problems with human–ma-
chine teaming were at play in the crash 
of Air France Flight 447 and the at-sea 
collision between the USS John S. Mc-
Cain and the chemical tanker MV ALNIC 
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MC. Operator confusion about what the 
automated system was doing played 
a role in each of these mishaps. Rigor-
ous V&V and human factors evaluation 
might have led to finding each system’s 
flaws or identified scenarios that re-
quire other system interventions, such 
as additional operator training. The 
recent global compromise of Micro-
soft Exchange servers provides an in-
teresting parallel: even organizations 
that patched their systems immediately 
when Microsoft announced the vulner-
ability were at high risk of compromise 
(a gap between the standard operating 
playbook of the system—patch critical 
vulnerabilities as soon as possible— 
and system safety—not being compro-
mised). Furthermore, the capacity for 
attackers to locate and breach tens of 
thousands of targets indiscriminately 
demonstrates the power of automation 
for attack, while similar detection tools 
available to defenders provide lists of 
affected organizations. Although the 
attack seems straightforwardly detect-
able, incident response requires sub-
stantial human adjudication, and even 
automation-enhanced response teams 
cannot operate fast enough to meet the 
scale of the breach. This both shows the 
continued asymmetry between attack 
and defense in a more automated world 
and highlights the continued need for 
operator intervention to maintain sys-
tem integrity. A similar problem exists 
with more “traditional” security tools 
such as malware scanning and perim-
eter defenses. Each requires configu-
ration and exception management. For 
example, a law firm investigating a se-
curity breach may need to “loosen” the 
“malware” restrictions in its perimeter 
defenses to facilitate legitimate inves-
tigative work. Automating this process 
can be difficult and overreliance on 
automation can result in greater expo-
sure, as distinguishing between legit-
imate investigative content related to 
the breach and potentially risky con-
tent is difficult at best without individ-
ualized human adjudication. The priv-
ilege separation requirements (within 
the firm) of a sensitive investigation 

of this nature further complicates this 
problem, and large-scale organizations 
would face a similar problem in other 
business contexts. 

While automated systems intro-
duce new failure modes and can con-
flate delegation of authority with dele-
gation of responsibility, they also deal 
well with speed of decision making 
and execution, which is often neces-
sary in cyberdefense. 

Measurement versus reflection: 
Data are not the truth, and 
neither are models 
All automated systems are models of 
the real encompassing assumptions 
about the world. Collapsing these 
models’ abstractions onto the real 
world can lead to loss of functionality 
or even disastrous failure. Rather, we 
need to understand the nature of each 
model’s assumptions. Systems based 
on machine learning and data science 
take their assumptions in the form of 
data gathered from the world. Even 
non-data-science-driven systems, such 
as traditional software, make assump-
tions about the real world when estab-
lishing their decision rules and use 
data to validate these assumptions. 
The quality and fidelity-to-reality of 
those data matter. Data are not objec-
tive truth. Someone decides what data 
to collect; how collection happens; and 
what to do about missing data items, 
outlying examples, and other data im-
perfections. These decisions present 
opportunities for data gathered to be 
skewed or biased representations of 
reality. Automated systems rely heav-
ily on the theories of measurement 
and metrology, which describe how 
to establish whether the world models 
implied by gathered data are faithful 
to reality, valid, and reliable in both 
qualitative and quantitative ways.15 

Systematic deviation from reality 
can lead to systematic error. However, 
accurate reflection of the world can 
also capture existing social structures 
and reinforce them through the oper-
ation of automated systems. In either 
case, this is the problem of bias in AI. 

Automating activities using poorly de-
fined models of the world leads to poor 
results. Thus, while it is possible to 
recognize whether an image contains 
a face and identify the person identi-
fied by that face, predicting the emo-
tion displayed by the face or whether 
the features of the face are predictive 
of attributes such as “criminality” or 
“employee performance” is not possi-
ble. These latter applications overlay a 
veneer of data-driven objectivity onto 
a world model that is not, and can-
not be, well established or validated 
against reality. Automating the dis-
covery of exploitable vulnerabilities 
corresponds to a well-defined, valid 
construct. Establishing whether a so-
cial network post represents a threat 
or a good-natured joke is challenging 
for human moderators; it is difficult 
or even i mpossible for automated 
systems limited by their rule-driven 
nature and limited linguistic capac-
ity. It is also easy to ignore basic te-
nets of experimental design and con-
flate correlation with causation—the 
fact that a model finds relationships 
among objects or co-occurrences of 
phenomena does not imbue those in-
teractions with meaning. In cyberse-
curity, the fact that Internet Protocol 
(IP) generated traffic at the time of a 
denial-of-service attack does not mean 
the IP was involved in the attack. 

Permissible versus possible: 
Technology can challenge ethics 
What is technologically possible may not 
correspond to what is preferable poli-
cy-wise or legally permissible. What is 
legally permissible is controlled by what 
laws and policies are operative and ap-
plicable. What is ethical depends on the 
context of human use and on the oper-
ating organization’s chosen values and 
normative commitments in that con-
text. Balancing these requirements 
is the domain of requirements engi-
neering: establishing how systems can 
uphold legal demands or behave in an 
ethical manner by design. To view AI 
applications as systems, we must in-
corporate both technical components 
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and their context, including human 
interactions. However, that is not to 
say that the technical components of a 
system are mere neutral tools—rather, 
they afford humans a set of choices. 
It may be that none of these choices 
is ethically unproblematic. Is it then 
reasonable to hold a human responsi-
ble for making an ethically problem-
atic choice? To be employed ethically, 
systems must afford humans ethical 
choices. Furthermore, the structure of 
the human-machine assemblage may 
obscure accountability. 

It is possible to delegate author-
ity but not responsibility. Automated 
tools enhance the capabilities of hu-
mans in sociotechnical systems, but 
the humans remain responsible for 
how the system as a whole behaves. 
Even if the automation robs respon-
sible humans of detailed situational 
awareness, those humans always re-
tain responsibility in hindsight. For 
critical applications, rigorous systems 
engineering, human factors evalua-
tion, and careful design can limit the 
likelihood of failure while trimming 
the range of failure scenarios available 
or address other dependability con-
cerns such as safety and security. 

It is important to provide avenues 
for recourse outside the rule set pro-
vided by automated tools.16 These 
channels for challenging a system’s 
outputs enhance the autonomy of 
those affected by automation, giving 
them a way to respond when rules can-
not or do not apply appropriately. In 
cybersecurity, this might mean giving 
discretion to human operators for how 
to respond to threats, maintaining re-
cords of operational decisions and ac-
tions for review by competent author-
ities, or providing for escalation paths 
when outcomes might be contested. 
Helping leaders and operators avoid 
becoming war criminals was one of 
the impetuses for formulating the black 
letter rules and commentary that com-
prise the Tallinn Manual,17 which has in-
fluenced cyberoperations doctrine and 
suggests similar channels for resources 
within that context. 

Possible versus practical: 
Technology versus 
operational practice 
Just as technological possibility may 
not map to lawfulness or policy pref-
erence, likewise it may not correspond 
with operational practicality. Just be-
cause something is theoretically possi-
ble (that is, its existence/possibility has 
not been disproven) does not mean that 
it is a plausible (or even likely) occur-
rence. Conflating possibility and plau-
sibility was a common error made by 
data protection advocates working at 
the intersection of privacy and cyber-
security during early efforts to define 
data protection rules. Contemporary 
cybersecurity research is gradually 
refocusing on risk-oriented analytical 
frameworks, leaving aside absolutist 
views of how protections and controls 
should apply. Cybersecurity prac-
titioners and researchers must resist 
recommitting this error when consid-
ering AI. 

The information revolution of the 
late 1990s and early 2000s saw an ex-
plosion of concern with the misuse 
of information. Voluminous scholar-
ship decried threats to privacy as a re-
sult of information availability driven 
by new technology, notwithstanding 
that much of this information was 
already public record.18 Pieces of 
information commonly used as au-
thentication tokens in security proto-
cols, such as an individual’s mother’s 
maiden name or place of birth, were 
designated as sensitive. Curiously, 
this information is legally required to 
be a matter of public record in nearly 
every U.S. jurisdiction—making the 
use of that information for security 
seemingly absurd. Yet, as a practical 
matter in the 1970s or 1980s, identi-
fying where an arbitrary individual 
was born let alone obtaining a copy 
of birth records (or at least parents’ 
names) was a time- and resource-in-
tensive task. Today, it is as easy as 
cross-referencing social media pro-
files with some basic online searches. 
What changed in this time period was 
not the secrecy of this information 

but rather the practicality of accessing 
that information at scale. 

In a similar vein, AI changes the op-
erational practicality of certain types 
of attacks. As discussed earlier, for 
example, automation increases the 
practicality of inference attacks. Sim-
ilarly, identity theft operations and 
associated techniques of large-scale 
human impersonation, noise-gener-
ating activities in verification chan-
nels, phishing, and other operations 
premised on access to large volumes 
of reasonable-quality identity-rele-
vant information are all now much 
more practical than before, compli-
cating the traditional problems of 
authentication. Likewise, automation 
of the deployment of this informa-
tion—for example, submitting large 
volumes of credential-reset requests 
for employees at a t a rge ted com-
pany—could render practical a type of 
denial-of-service attack that always 
has been theoretically possible, but 
never would have been considered 
practical, let alone likely. 

It will always remain critical for 
cybersecurity to be able to distinguish 
between the possibility of a particular 
threat and its practicality. AI does not 
change the basic risk calculus for what 
attacks are feasible, which has been a 
core tenet of security analysis for cen-
turies. But it might change the relative 
practicality of certain attacks, chang-
ing the inputs to that risk assessment. 

DIMENSIONS OF 
CYBERSECURITY ISSUES 
FOR AI SYSTEMS 
Similarly, we provide dimensions that 
cybersecurity decision makers can use 
to analyze problems managing the 
cybersecurity of AI systems used for 
applications other than enhancing the 
practice of cybersecurity. 

Integrity risks: Poisoning, 
evasion, and trickery 
If we accept that data are a model of 
the world, necessarily imperfect and 
not a true and objective reflection 
of reality, then we must also accept 
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that maintaining the integrity of that 
model is of paramount importance. 
If an adversary can modify data, they 
can redefine truth for the purpose of 
an automated system. In doing so, the 
adversary can trick an automated sys-
tem into giving outputs undesired by 
the system’s controller but desired by 
the adversary, for example, allowing 
access to protected data and facilities 
or tricking predictive maintenance 
systems into leaving certain vehicles 
u n ma i nt a i ned (a nd t hus u n ready 
when needed). Although primitives 
for establishing the integrity of data 
stored at rest and data in transit are 
well established, defenses against data 
poisoning and assurance methods, 
which establish that data are traceable 
to their source and an accurate reflec-
tion of their generating measurement 
process, are not widely deployed. This 
is an area for future attention. 

Confidentiality risks: Privacy 
and data governance 
As noted earlier, AI leads to a world 
where the problem of data aggregation 
can be robustly automated by adver-
saries. Suddenly, every small action of 
an individual or an organization can 
become an indicator of identity or re-
veal sensitive activity. The retailer Tar-
get famously used the history of items 
purchased by individual customers 
to determine which of those custom-
ers were pregnant, enabling targeted 
marketing and advertising to custom-
ers likely to engage in drastic shifts in 
purchasing patterns. Thus, data pri-
vacy presents new and critical risks in 
an age of AI systems. Similarly, exist-
ing notions of what data are sensitive 
or not are likely outdated. These infer-
ence issues can be managed through 
the use of cover noise (for example, via 
differential privacy, which can guar-
antee that no analyst can infer certain 
facts with certainty greater than a 
given probability19) and more careful 
data governance (for example, estab-
lishing when data should be retained, 
for what they can be used, and when 
they should be destroyed). 

Human factors, automation, 
and coordinating 
inauthentic behavior 
AI enables the more robust adversarial 
manipulation of digital systems, in-
creasing the risk of external and inter-
nal abuses. For example, adversaries 
can shape the nature of discourse on 
an online forum or social media plat-
form by using bots to inject irrelevant 
spam or to respond to legitimate mes-
sages with replies that drive propa-
ganda messages and stifle legitimate 
discussion. Establishing whether such 
activity is authentic is a difficult prob-
lem in isolation, based solely on the 
text of the reply. However, by drawing 
patterns of activity across time, space, 
and accounts, automation can help ad-
dress the problem at the systemwide 
level (for example, if thousands of ac-
counts post the same message at the 
same time or related times, post the 
same message across multiple plat-
forms, or connect from the same net-
work-level address). 

PRINCIPLES FOR 
CYBERSECURITY IN AN 
AI-ENABLED WORLD 
We have already entered the world 
where AI enhances the range of tasks 
that can be successfully automated. 
The changes driven by new technology 
are important and large but leave the 
fundamental outlines of cybersecurity 
intact. To properly understand how AI 
interacts with cybersecurity, it is nec-
essary to understand the particulars of 
the application as well as the capabili-
ties and limitations of the technology 
being introduced. Furthermore, we 
need to view that technology in the 
context of an entire system, which in-
cludes human operators, policies, orga-
nizational ethics, and many concerns 
beyond technology. To navigate these 
difficult waters, we offer an analytic 
framework for relating a new technol-
ogy to its application. Furthermore, we 
conclude with three broad principles 
for any decision maker considering 
how AI will affect their cybersecurity 
by applying our framework. 

First and foremost: automation takes 
tasks done by humans and embodies it 
in technology. Because the same work 
happens, but in a different way and 
within a different process workflow, this 
represents a delegation of authority but 
must not reflect a delegation of responsi-
bility. Humans must remain accountable 
for the operation of the system and its 
outcomes. To establish sufficient over-
sight, the actions of any system must be 
sufficiently traceable that an oversight 
entity can determine what led to them 
and whether they might have been ma-
nipulated by insiders or outside adver-
saries. Designing systems to support this 
level of traceability is a key challenge. 

Second, systems should act as their 
controllers intend them to, fulfilling the 
requirements set forward for them and 
capturing the needs of their controllers 
in those requirements. To establish this, 
systems must be subjected to rigorous 
test and evaluation processes, including 
robust whole-system V&V. Again, test 
and evaluation for AI systems is a topic 
of active research, though many sophis-
ticated assessments are already feasible. 

Finally, to take a complete system-level 
perspective, it is necessary to consider 
the human factors, including educating 
AI system developers, human operators 
(for example, system administrators), 
and other stakeholders (for example, 
policy makers). Identifying stakehold-
ers and their relationship to the AI sys-
tem does a great deal to establish and 
clarify the system’s goals and require-
ments and aids its smooth operation 
and adoption. Otherwise, automation 
can suffer failures as fewer humans are 
responsible for more output but less 
aware of how that output is generated. 
Enhanced by automation, humans are 
both more critical to the points where 
the technology hands off control and 
less able to take on that control either 
in nominal or degraded modes of sys-
tem operation. 

In short, AI is transformative not be-
cause it magically solves previously 
unsolvable problems but because it 
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augments the capabilities of existing 
organizations, enabling new struc-
tures and solutions that reorganize ex-
isting problems and the work needed 
to address them. 
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