COMPILATION OF LOCAL FALLOUT DATA FROM TEST DETONATIONS 1945-1962 EXTRACTED FROM DASA 1251

Volume II -Oceanic U.S. Tests

General Electric Company—TEMPO DASIAC 816 State Street Santa Barbara, California 93102

1 May 1979

Extract

CONTRACT No. DNA 001-79-C-0081

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B337079464 P99QAXDC00809 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305

DARE TRACKING

16874

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMEN	READ INSTRUCTIONS BEFORE COMPLETING FORM		
DNA 1251-2-EX	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
COMPILATION OF LOCAL FALLO DETONATIONS 1945-1962 EXTR	ACTED FROM DASA 1251	5. TYPE OF REPORT & PERIOD COVERED Extract	
Volume II—Oceanic U.S. Te	sts	6. PERFORMING ORG. REPORT NUMBER DASIAC SR 179 VOL. II	
7. AUTHOR(s) Howard A. Hawthorne, Editor		B. CONTRACT OR GRANT NUMBER(*) DNA 001-79-C-0081	
General Electric Company—1 DASIAC, 816 State Street Santa Barbara, California	TEMPO	10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS Subtask P99QAXDC008-09	
1. CONTROLLING OFFICE NAME AND ADD	RESS	12. REPORT DATE 1 May 1979	
Defense Nuclear Agency Washington, D.C. 20305		13. NUMBER OF PAGES 351	
14. MONITORING AGENCY NAME & ADDRES	S(if different from Controlling Office)	UNCLASSIFIED	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This work sponsored by the Defense Nuclear Agency under RDT&E RMSS Code B337079464 P99QAXDC00809 H2590D.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

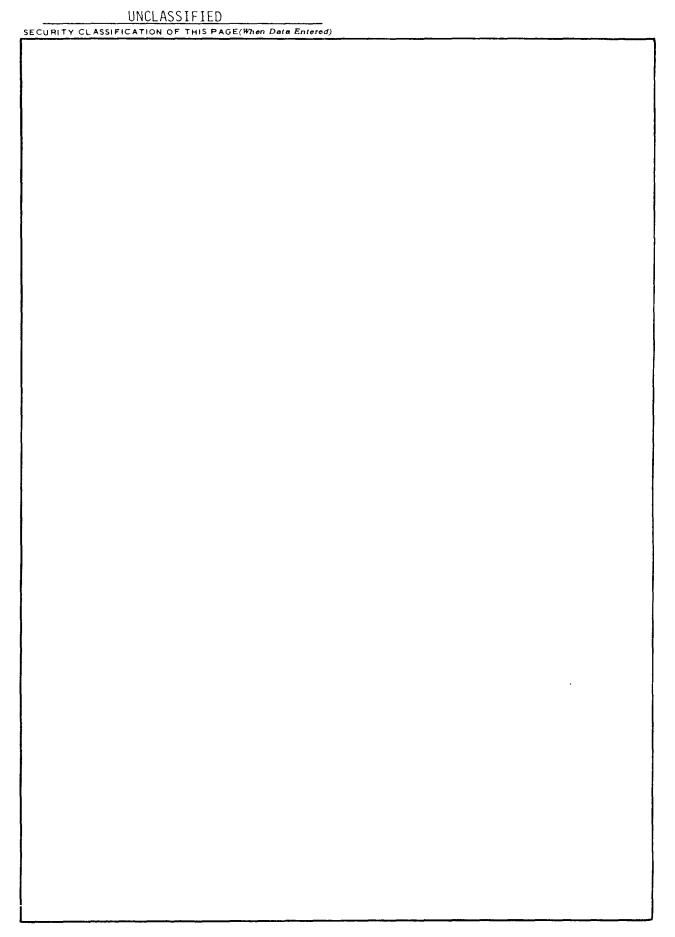
Nuclear Weapons Testing

Fallout

Radiological Contamination

Nuclear Radiation

Pacific Proving Ground


Enewetak Bikini

Johnston Island

Christmas Island

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Fallout patterns from U.S. oceanic nuclear weapons tests. Also given are time and place of test and ambient winds.

PREFACE

This report has been prepared to serve as an unclassified source of information and data concerning the atmospheric nuclear test program conducted by the United States prior to 1963. The information contained herein was reproduced directly from the classified versions of the DASA 1251 series of reports. The classified material which was deleted to prepare this report was in accordance with the requirements of the Atomic Energy Act of 1954 and would not contribute to an understanding of the radiation interactions with personnel. All fallout plots and radiation contours are presented exactly as they appeared in the classified version of DASA 1251.

TABLE OF CONTENTS

OPERATION	PAGE NO
Crossroads	4
Sandstone	13
Greenhouse	26
Ivy	50
Castle	61
Wigwam	97
Redwing	100
Hardtack I	185
Argus	316
Dominic	319
Appendix	A-1

INTRODUCTION

The objective of this report is to provide a ready reference of fallout patterns and related test data for those engaged in the analysis of fallout effects.

This compilation was extracted from DASA 1251 "Local Fallout from Nuclear Test Detonations" (U) Vol. 2 "Compilation of Fallout Patterns and Related Test Data" (U) Parts 1 through 3. DASA 1251 Vol. 2 was the work of Manfred Morgenthau, Harvy Meieran, Richard Showers, Jeffrey Morse, Norman Dombeck, and Arnoldo Garcia of the U.S. Army Nuclear Defense Laboratory under Defense Atomic Support Agency (now Defense Nuclear Agency) sponsorship.

Although local (early) fallout is emphasized, the data presented will be useful to those studying world-wide (delayed) fallout as well. In this report local fallout is defined as all fallout which consists principally of the larger particles that are deposited within 24 hours after the detonation. World-wide or delayed fallout is defined as fallout which consists of very small particles which descend very slowly over large areas of the earth's surface.

Data resulting from each U.S. detonation are presented chronologically. For each detonation, the basic information useful for an interpretation of the fallout data is tabulated first. This is followed by both on-site and off-site fallout patterns where available. A graph of the growth-rate of the cloud and stem is presented next. Wind speed and direction are than tabulated as a function of altitude, and hodographs are drawn from these data.

EXPLANATION COMMENTS ON DATA PRESENTED

Fallout Patterns

One or more fallout patterns are given for each event, except for those shots for which no sigificant residual radiation was observed downwind of GZ or for which no patterns were found in the literature. In the remarks included on the basic data sheet for each shot, the individual fallout patterns are discussed briefly; some comments are made for those shots for which no patterns were available. The doserate contours for the fallout patterns have been drawn to show the gamma dose rate in roentgens per hour, three feet above the ground, in terms of the one hour after burst reference time. The t^{-1.2} approximation was used when no actual decay data was available to adjust radiation measurements to the one hour reference time. It is important to recognize the H+1 hour is used as a reference time, and that only the contours from low yield weapons are complete at one hour after burst. For high yield weapons, fallout over some parts of the vast areas

shown does not commence until many hours after the burst. The time of arrival of fallout is indicated on some of the fallout patterns by "dot-dash" lines. The time lines are intended to give only a rough average arrival time in hours as estimated from the wind reports and the available monitoring information.

Induced Activity Patterns

The contamination resulting from low air bursts is due primarily to the activity induced by neutrons which are captured by certain elements in the soil, notably sodium, manganese and aluminum. The resulting radiation field is circular and covers a limited area about ground zero. Weather conditions have very little influence on the location or shape of the induced radiation pattern. However, increasing the moisture content in soils can increase the induced activity levels. The rate of decay of the induced radiation field is different from the decay of fission products and depends on the composition of the soil over which the weapon was detonated. For Nevada soil, the sodium and manganese composition generally varies by a factor of 1.4 to 2 and the aluminum composition varies by a factor of 3 to 7 within and between test areas. For most induced activity patterns in this report, a general neutron-induced decay curve for Nevada soil was used to extrapolate the observed dose rates back to H+1 hour. For a few induced activity patterns, Na²⁴ decay is used to extrapolate the observed dose rates to H+1 hour. This decay rate is not strictly applicable but it closely approximates the observed decay.

Wind Data

The tables of wind data give surface and upper air winds for heights up to at least the top of the nuclear cloud. These data are presented for times as close to shot time as possible and for several times after shot. Directions are in degrees from which the wind is blowing, and are measured clockwise from North. Velocities are in statute miles per hour. The height of the tropopause at shot time is given when available. Although the meteorological data were taken in close proximity to ground zero, they do not necessarily represent the wind field downwind from ground zero in space and time.

The hodographs are drawn for a constant balloon rise rate of 5,000 ft/hr and are presented for illustrative purposes only. The fall rates of particles vary considerably with altitude; therefore, errors will result from the use of a constant fall-rate hodograph for fallout prediction. In general, particles in higher altitude levels fall faster and the percentage change in the falling rate is greater for larger particles. The numbers on the hodographs represent altitudes in thousands of feet. The associated points represent the locations on the surface where particles having a constant fall-rate of 5,000 ft/hr would land if they originated over GZ at the altitudes shown. The letter S on the hodographs stands for "Surface" and the number next to it in parenthesis (for the Nevada shots) is the site elevation of ground zero in feet above MSL.

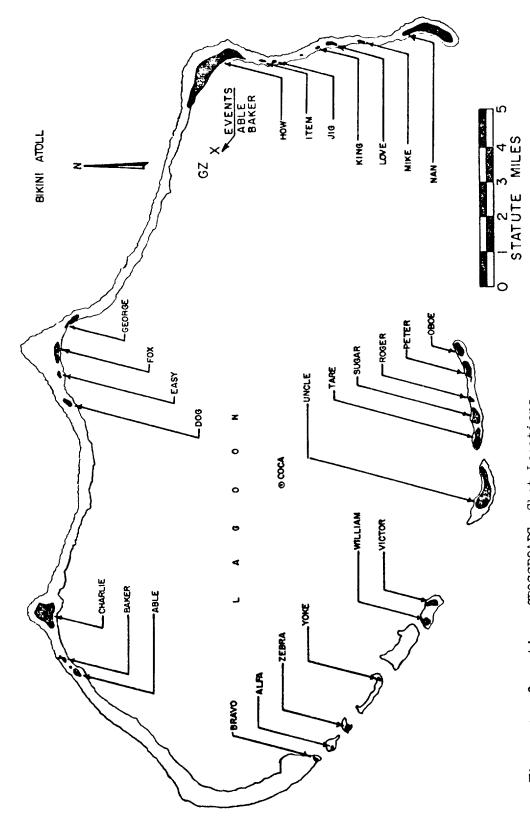


Figure 1 Operations CROSSROADS, Shot Locations.

OPERATION CROSSROADS -

Able

PPG time GMT

1 Jul 1946 30 June 1946

DATE: TIME: 0900 2200

SITE: PPG - Bikini

Sponsor: LASL and DOD

11° 37' 10" N 165° 29' 28" E

Site elevation: Sea level

TOTAL YIELD: 23 kt

HEIGHT OF BURST: 520 ft

TYPE OF BURST AND PLACEMENT:

Air burst over water

FIREBALL DATA:

Time to 1st minimum: NM

NM

Time to 2nd maximum: Radius at 2nd maximum: ~ 576 ft CLOUD TOP HEIGHT:

40,000 ft MSL

CLOUD BOTTOM HEIGHT: Not available

CRATER DATA: No crater

RFMARKS:

The residual radioactivity on target vessels was low. On D+1 day, radioactivities greater than O.lr per 24 hours were found on only 13 vessels. The residual radioactivity in the water after H-hour was negligible.

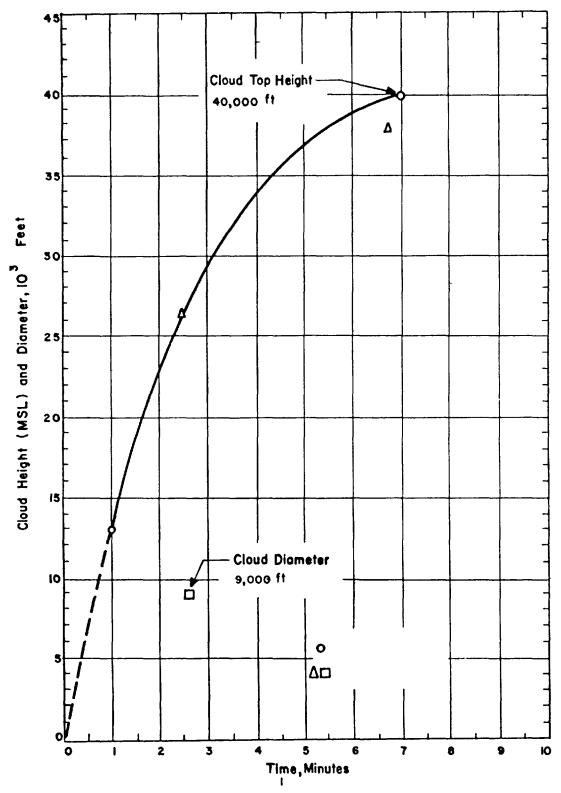


Figure 2. Cloud Dimensions: Operation CROSSROADS -

Able.

TABLE 1 BIKINI WIND DATA FOR OPERATION CROSSROADS,

ABLE

Altitude	H-hou	r	H+5 ho	urs	H+8 ho	urs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	de gr e es	mph	degrees	mph
Surface	(070)	(09)	045	09	070	08
2,000	130	15				
4,000	130	16	130	16	120	14
5,000	(130)	(16)	(130)	(15)	(120)	(14)
6,000	140	17	130	14	120	15
8,000	120	13	120	14	020	16
10,000	(120)	(19)	130	17	120	16
12,000	120	08	110	16	130	17
14,000	100	10	110	10	070	53
15,000	100	08	020	06	040	06
20,000	330	05	150	17	170	09
25,000	180	09	280	02	230	07
30,000	340	07	330	05	310	05
35,000	340	02	080	06	Calm	Caln
40,000	070	09	360	25	350	28
45,000	030	30	330	31	320	32

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Surface wind data was obtained on Bikini; upper wind data was obtained on board the Mt. McKinley.
- 3. Tropopause height was 54,000 to 60,000 feet (exact height is uncertain).
- 4. At H-hour the surface air pressure was 14.68 psi, the temperature 27.2° C and the dew point 23.4° C.

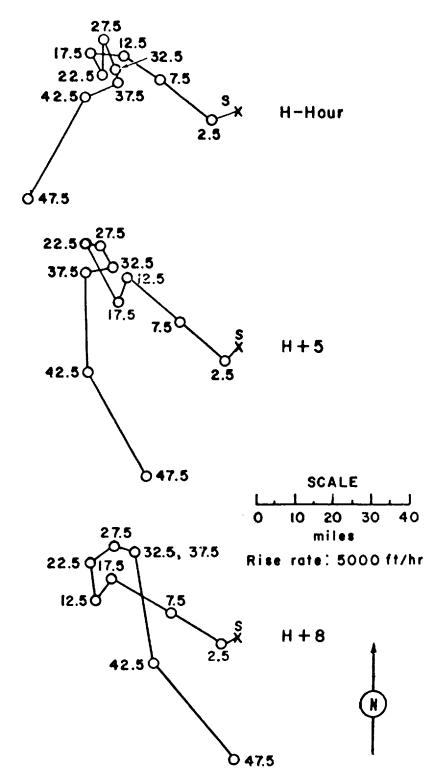


Figure 3. Hodographs for Operation CROSSROADS

- Able.

OPERATION CROSSROADS -

Baker

PPG time GMT

DATE: 25 Jul 1946 24 Jul 1946

TIME: 0835 2135

TOTAL YIELD: 23 kt

FIREBALL DATA:

Time to 1st minimum: NM
Time to 2nd maximum: NM
Radius at 2nd maximum: NM

Sponsor: LASL and DOD

SITE: PPG - Bikini - Near How

ll^o 37' lo" N 165° 29' 28" E

Site elevation: Sea level

HEIGHT OF BURST: -90 ft

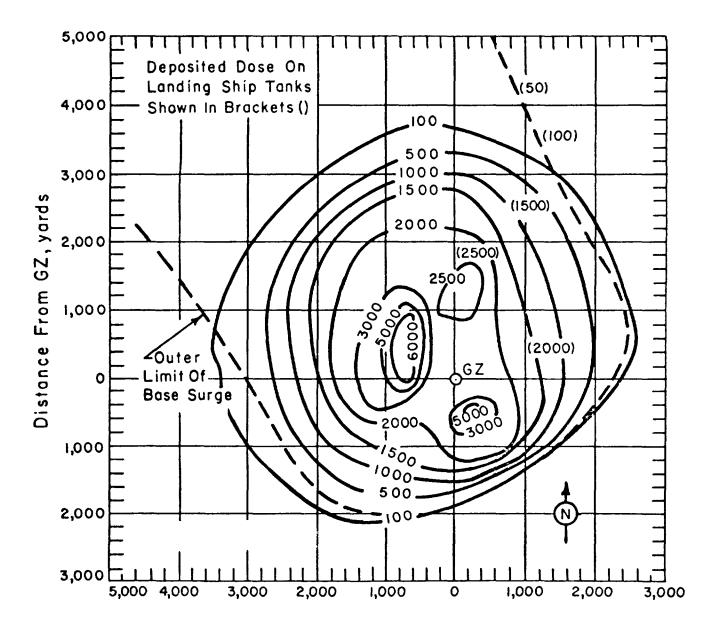
TYPE OF BURST AND PLACEMENT:

Underwater - cable-supported 90 ft above lagoon floor. Lagoon was 180 ft deep.

CLOUD TOP HEIGHT: 7,600 ft MSL

CRATER DATA:

Diameter: 3,300 ft maximum


1,800 ft minimum

Depth: 25 ft

REMARKS:

The contamination pattern is unreliable. The dose-rate readings used for the pattern were obtained from the total dose measured by film badges collected between D+10 days and D+15 days. The radioactivity on the target vessels diminished

At its greatest extent the base surge extended about 2,000 yd upwind, 3,000 yd crosswind and 4,000 yd downwind. "The contamination resulted from fallout or radioactive rain from the mushroom head reinforced somewhat by condensation of the base surge. Ideally there should have been an annular infinitive-dose pattern as a result of fallout from the outer edges of the mushroom head. This ideal pattern was changed because of the intermittent behavior of the rain-out and because of the varying ability of the different target ships to retain the fallout activity."

Distance From GZ, yards

Figure 4. Operation CROSSROADS - Baker. On-site dose rate contours in r/hr at H+1 hour.

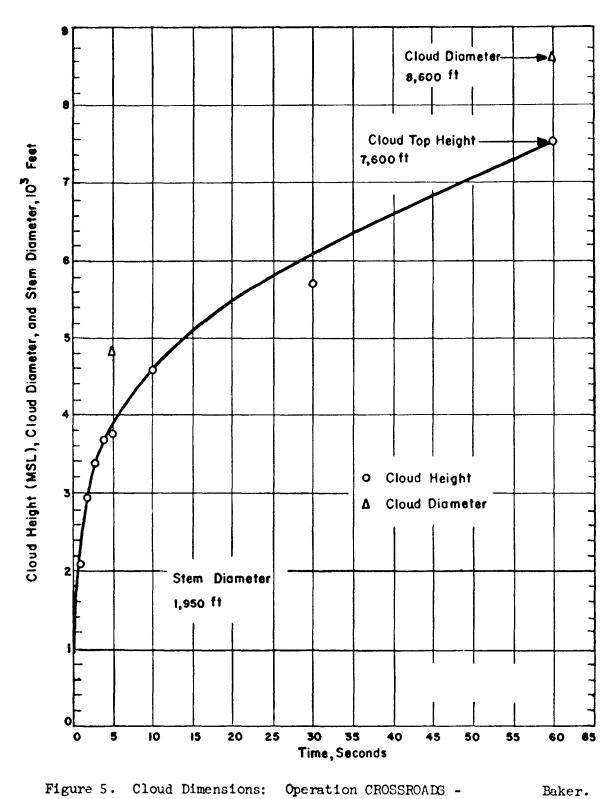


Figure 5. Cloud Dimensions: Operation CROSSROADS -

Altitude H-hour		r	Altitude	H-hour	,
(MSL)	Direction	Speed	(MSL)	Direction	Speed
feet	degrees	mph	feet	degrees	mph
Surface	200	03	14,000	080	09
2,000	160	12	15,000	080	09
4,000	160	12	16,000	080	13
6,000	150	09	20,000	110	09
8,000	150	08	25,000	050	12
10,000	120	09	30,000	040	20
12,000	110	14	35,000	060	32

NOTES:

- 1. Surface wind data was obtained at H+l hour on Bikini; upper wind data was obtained on board the "Fall River."
- 2. Tropopause height was 54,000 to 60,000 feet (exact height is uncertain).
- 3. At H-hour the surface air pressure was 14.68 psi, the temperature 28.9° C and the dew point 25.0° C.

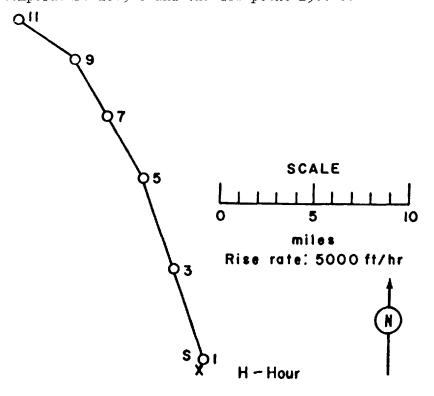


Figure 6. Hodographs for Operation CROSSROADS -

Baker

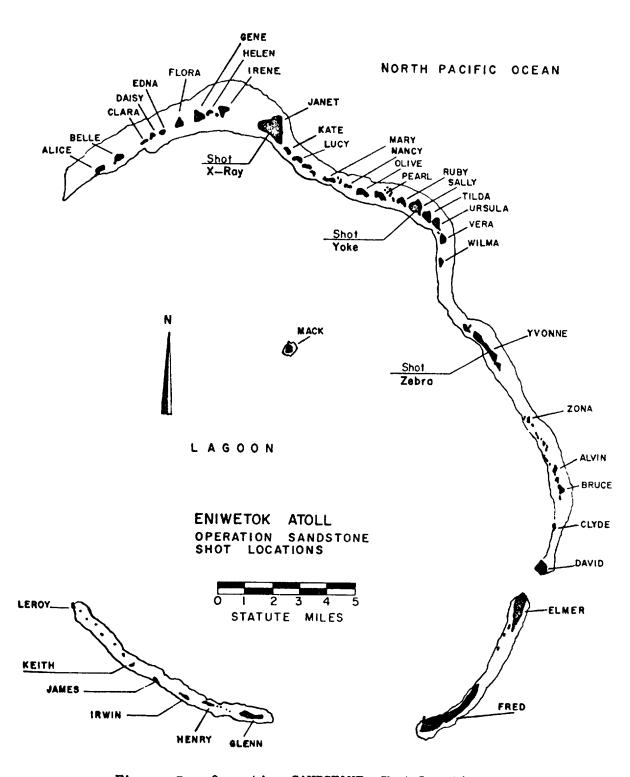


Figure 7. Operation SANDSTONE, Shot Locations.

OPERATION SANDSTONE -

X-Ray

PPG Time

GMT

Sponsor: IASL

MTE: 15

15 Apr 1948 14 Apr 1948

TIME: 0617 1817

SITE: PPG - Eniwetok - Janet

11° 40' N

162° 14' 37" E

Site elevation: Sea level

TOTAL YIELD: 37 kt

HEIGHT OF BURST: 200 ft

TYPE OF BURST AND PLACEMENT:

Tower burst over coral soil

FIREBALL DATA:

Time to 1st minimum: NM Time to 2nd maximum: NM

Radius at 2nd maximum: NM

CLOUD TOP HEIGHT: 56,000 ft MSL CLOUD BOTTOM HEIGHT: 25,000 ft MSL

CRATER DATA: Not available

REMARKS:

No fallout pattern available. Radioactive samples were taken from Ground Zero and showed a decay Also much activity due to ${\rm Na}^{24}$ was observed. Cloud reached the tropopause in 12 minutes.

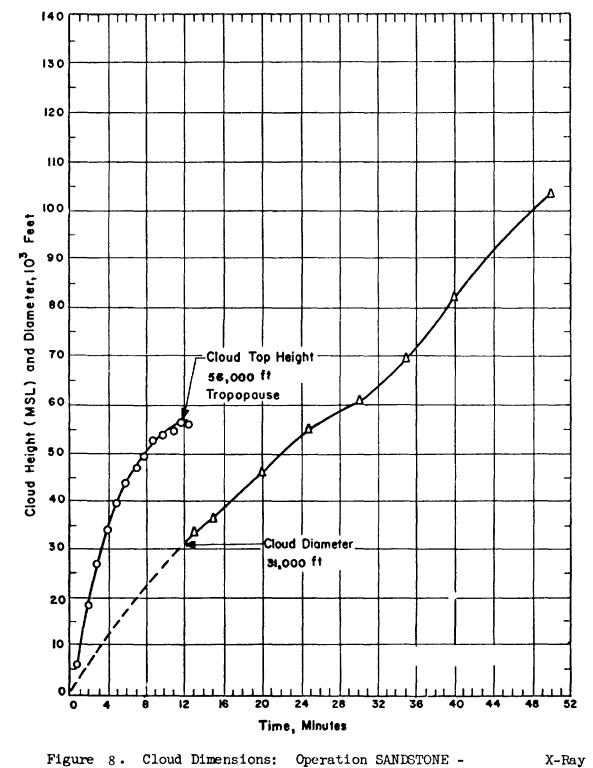


Figure 8. Cloud Dimensions: Operation SANDSTONE -

TABLE 3 ENIWETOK WIND DATA FOR OPERATION SANDSTONE -

X-RAY

Altitude	H-hour		H+2 ho	H+2 hours		H+3 hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	degrees	mph	
Surface	090	10	090	12	070	16	
2,000			100	15	070	23	
4,000			100	12	090	23	
5,000	100	14	(100)	(12)	(095)	(24)	
6,000			090	12	100	25	
8,000			110	21	090	23	
10,000	130	14	130	15	080	16	
12,000			120	13	080	12	
14,000			140	09	070	09	
15,000	150	09	(140)	(09)	(075)	(08)	
16,000			140	10	080	07	
18,000			140	09	360	07	
20,000	160	09	140	02	210	02	
25,000	230	12	220	12	120	09	
30,000	240	14	210	15			
35,000	220	23	210	21			
40,000	220	15	220	21		~-	
45,000	220	34	220	37			
50,000	230	23	230	21			
55,000	220	14					

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 55,000 ft MSL at H-hour.
- 3. The H-hour wind data was estimated by the USAF weather station
- on Eniwetok Island. The H+2 and H+3 hour winds were measured. At H-hour the sea level pressure was 1190 mb, temperature 75°F , and the dew point 71°F.

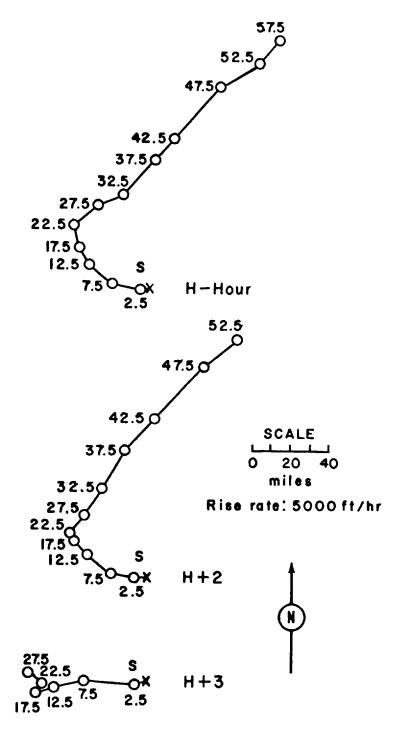


Figure 9. Hodographs for Operation SANDSTONE - X-Ray.

OPERATION SANDSTONE -

Yoke

DATE: PPG time GMT 30 Apr 1948

TIME: 0609 1809

SITE: PPG - Eniwetok - Sally

Sponsor: LASL

11° 37' 40" N 162° 19' 27" E

TOTAL YIELD: 49 kt Site elevation: Sea level

HEIGHT OF BURST: 200 ft

TYPE OF BURST AND PLACEMENT:

Tower burst over coral soil

Time to 1st minimum: NM

Time to 2nd maximum: NM Radius to 2nd maximum: NM

CLOUD TOP HEIGHT: 56,000 ft MSL CLOUD BOTTOM HEIGHT: 35,000 ft MSL

CRATER DATA: Not available

REMARKS:

No fallout pattern available. Cloud reached tropopause in 12 minutes. Yoke rain-out was observed on Kwajalein at H+36 hours; rain fell for 10 hours and the maximum activity observed was 6 to 10 mr/hr.

Cloud Dimensions: Operation SANDSTONE -Figure 10.

Altitude	H-hou	r	H+3 hc	ours	
(MSL)	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	
Surface	080	16	070	15	
2,000			070	21	
4,000			090	12	
5,000	090	14	170	07	
6,000			180	08	
10,000	160	12	150	39	
14,000			080	41	
15,000	090	07	090	29	
16,000			100	28	
20,000	220	12	170	42	
25,000	210	16	250	70	
30,000	210	24	270	47	
35,000	220	48		~-	
40,000	210	57		~ =	
45,000	210	54		~-	
50,000	200	49			
55,000	200	40			

NOTES:

- 1. Tropopause height was estimated to be 56,000 ft MSL at H-hour. 2. The H-hour wind data was estimated by the USAF weather station on Eniwetok Island. The H+3 hour winds were measured.
- 3. At H-hour the sea level pressure was 1050 mb, the temperature 79° F, and the dewpoint 72° F.

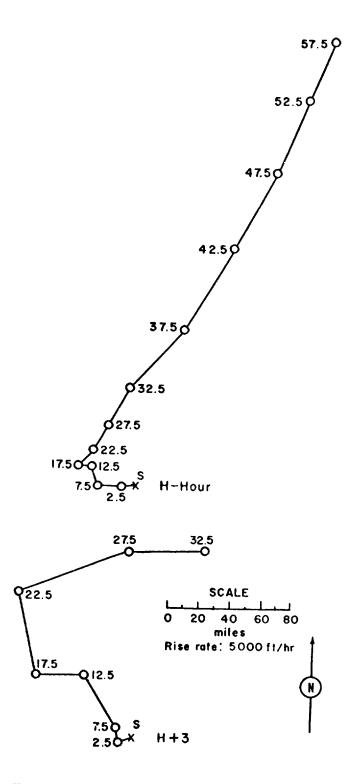


Figure 11. Hodographs for Operation SANDSTONE -

Yoke.

OPERATION SANDSTONE -

Zebra

PPG time

Sponsor: LASL

DATE:

15 May 1948 14 May 1948

TIME: 0604 1804

SITE: PPG - Eniwetok - Yvonne

11° 33' 15" N 162° 21' 24" E

Site elevation: Sea level

TOTAL YIELD: 18 kt

HEIGHT OF BURST: 200 ft

TYPE OF BURST AND PLACEMENT: Tower burst over coral soil

FIREBALL DATA:

Time to 1st minimum: NM Time to 2nd maximum: NM

CLOUD TOP HEIGHT:

28,400 ft MSL

CLOUD BOTTOM HEIGHT: 20,000 ft MSL

Radius at 2nd maximum: NM.

CRATER DATA: Not available

REMARKS:

No fallout pattern available.

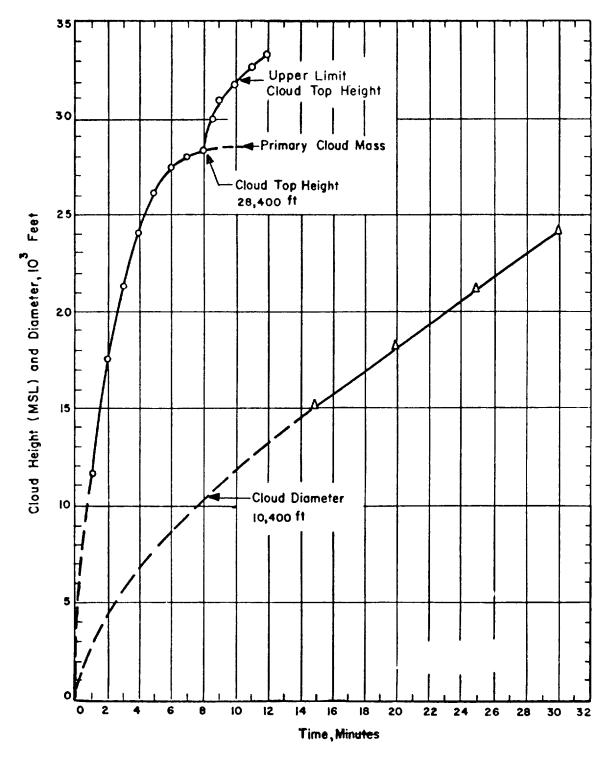


Figure 12. Cloud Dimensions: Operation SANDSTONE -

Zebra.

TABLE 5 ENIWETOK WIND DATA FOR OPERATION SANDSTONE - ZEBRA

Altitude	H-hour		H+2 hours		H+3 hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	080	10	100	09	090	09
2,000	100	17	110	16	100	17
5,000	130	13	110	15	110	14
10,000	220	13	190	12	220	14
15,000	270	14	240	07	240	80
20,000	240	21	250	20	260	24
25,000	250	31	260	29	250	36
30,000	270	50	260	45	270	44
35,000	280	50	260	46	290	44
40,000	270	83	290	48	290	56
45,000	270	40	280	48	270	55

NOTES:

- 1. Tropopause height was 54,000 feet MSL at H-hour.
- 2. The H-wind data was estimated by the USAF weather station on Eniwetok Island. The H+2 and H+3 hour winds were measured.
- 3. At H-hour the sea level pressure was 810 mb, the temperature 81° F, and the dew point 74° F.

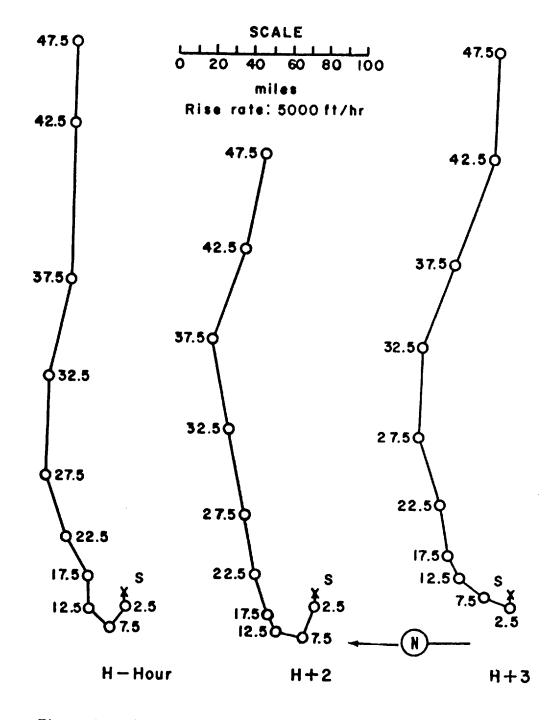


Figure 13. Hodographs for Operation SANDSTONE -

Zebra

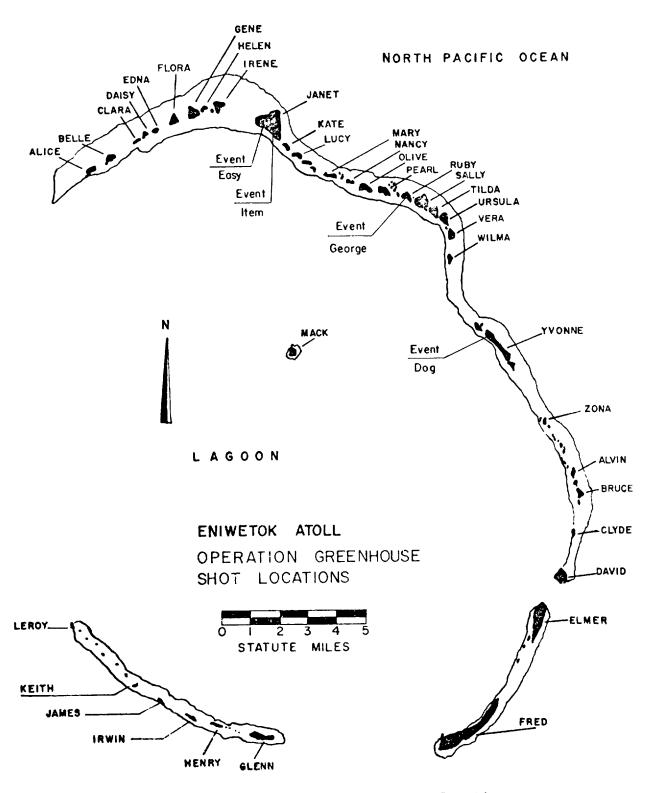


Figure 14. Operation GREENHOUSE, Shot Locations

OPERATION GREENHOUSE -

Dog

PPG time GMT

DATE: 8 Apr 1951 7 Apr 1951

TIME: 0634 1834

Sponsor: LASL

SITE: PPG - Eniwetok - Yvonne

11° 33' 21" N 162° 21' 16" E

Site elevation: Sea level

HEIGHT OF BURST: 300 ft

TYPE OF BURST AND PLACEMENT:

Tower burst over coral soil

CLOUD TOP HEIGHT: 56,000 ft MSL CLOUD BOTTOM HEIGHT: 33,000 ft MSL

REMARKS:

The dose-rate readings were corrected to H+1 hour by applying the $t^{-1\cdot 2}$ law to measurements made by the Radiological Safety organization. Measurements on Yvonne were made at H+8 $\frac{1}{2}$ hours. Many of the measurements were obtained from a helicopter flying at an altitude of 10 to 20 feet above the ground. These readings may therefore be low by as much as 20 to 50 percent. The wind shear at about 20.000 feet accounts for the higher dose rates on the southeastern part of the atoll, as compared to the southern end of the shot island.

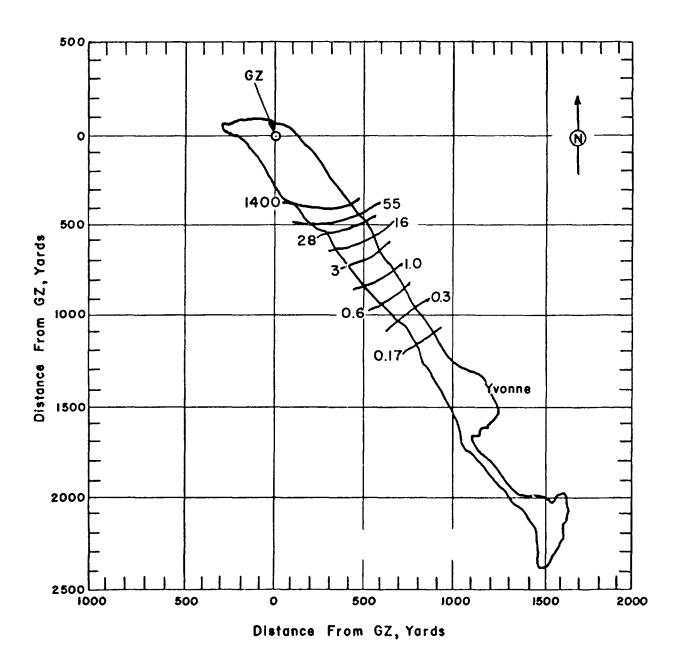


Figure 15. Operation GREENHOUSE - Dog.
Shot - Island dose rate contours in r/hr at H+l hour.

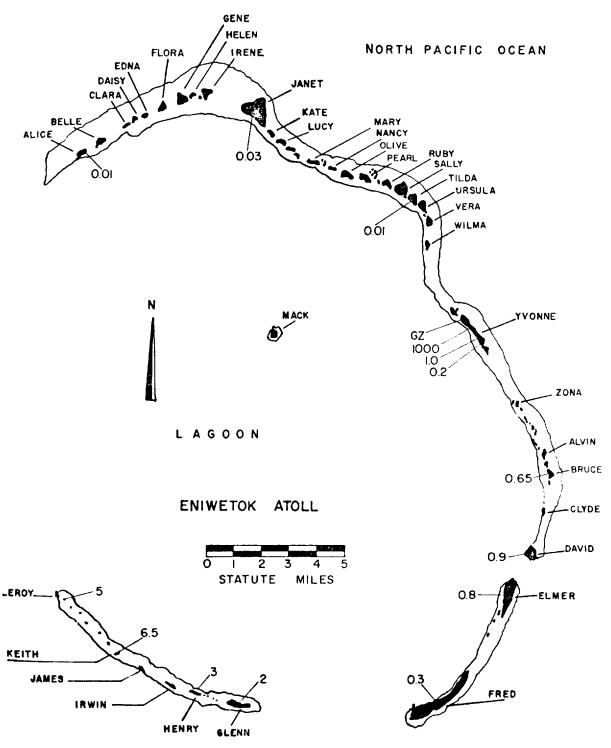


Figure 16. Operation GREENHOUSE - rates in r/hr at H+1 hour.

Dog. Atoll dose

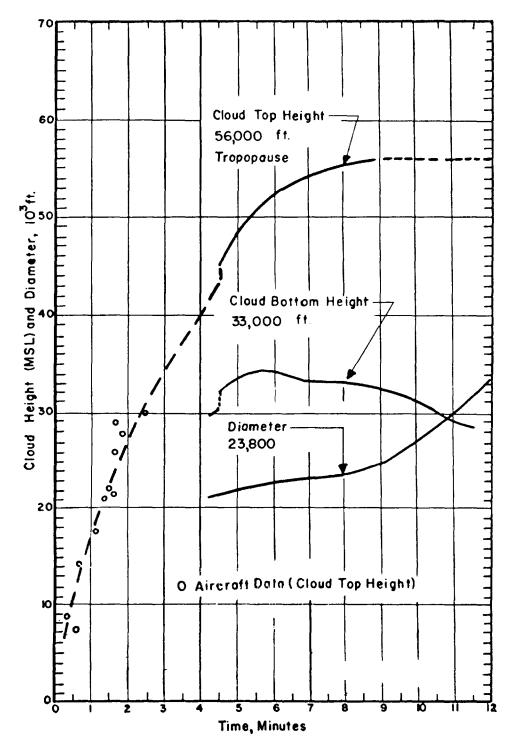


Figure 17. Cloud Dimensions: Operation GREENHOUSE -

Dog.

Altitude	H-ho	ur	H+2½ h	ours	
(MSL)	Dir	Speed	Dir	Speed	
ſeet	degrees	mph	degrees	mph	
Surface	070	22	040	21	
4,000	080	33			
5,000	(080)	(30)	090	24	
6,000	080	26			
10,000	080	22	100	25	
14,000	070	21	070	25	
15,000	(070)	(24)	(070)	(25)	
16,000	070	29	070	24	
20,000	030	22	050	22	
25,000	300	12	340	17	
30,000	280	31	290	29	
35,000	230	29	230	29	
40,000	220	33	230	37	
45,000	280	26	250	31	
50,000	310	22	330	29	
55,000	340	31	360	36	
60,000	030	33			

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 55,000 ft MSL at H-hour.
- 3. At H-hour at a pressure of 1000 mb the temperature was 25°C and the dew point 22°C.

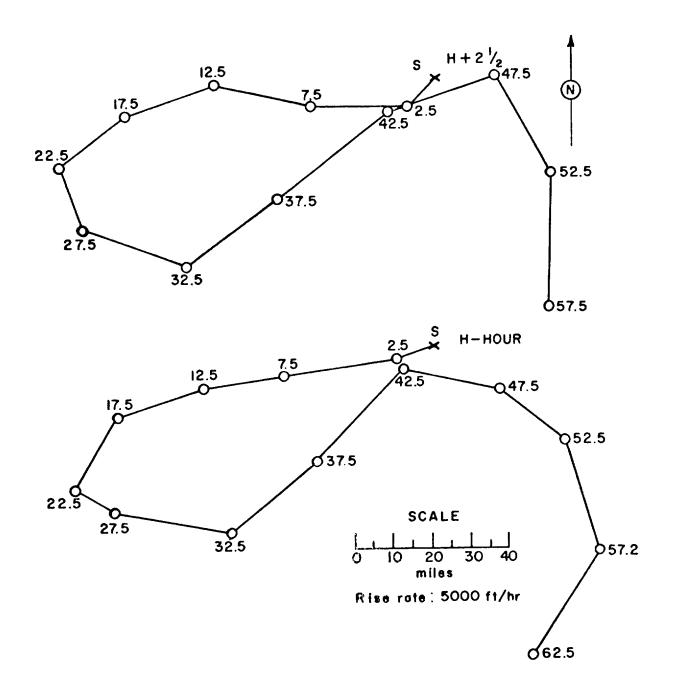


Figure 18. Hodographs for Operation GREENHOUSE -

Dog.

OPERATION GREENHOUSE -

Easy

Sponsor: LASL PPG time GMT

21 Apr 1951 20 Apr 1951 TIME: PPG - Eniwetok - Janet 0627 1827

> 11° 40' 08" N 162° 14' 25" E

Site elevation: Sea level TOTAL YIELD: 47 kt

HEIGHT OF BURST: 300 ft

TYPE OF BURST AND PLACEMENT: Tower burst over coral soil

FIREBALL DATA:

DATE:

Time to 1st minimum: 19 to 29.5 msec Time to 2nd maximum: 200 to 230 msec

Radius at 2nd maximum: NM

41,000 ft MSL CLOUD TOP HEIGHT: CLOUD BOTTOM HEIGHT: 30,000 ft MSL

836 ft CRATER DATA: Diameter:

2.4 ft Depth:

REMARKS:

The fallout readings on the shot island were obtained by the Radiological Safety organization at H+28 hours and corrected to H+l hours, using the $t^{-1.2}$ decay approximation. Dose rates shown for other islands are based upon daily surveys made to determine field decay rates. Readings were made 1 meter above the ground with gamma ionization chambers. The values shown were corrected to H+1 hour by extrapolating from the experimental decay curves. There was a wind shear at about 15,000 feet.

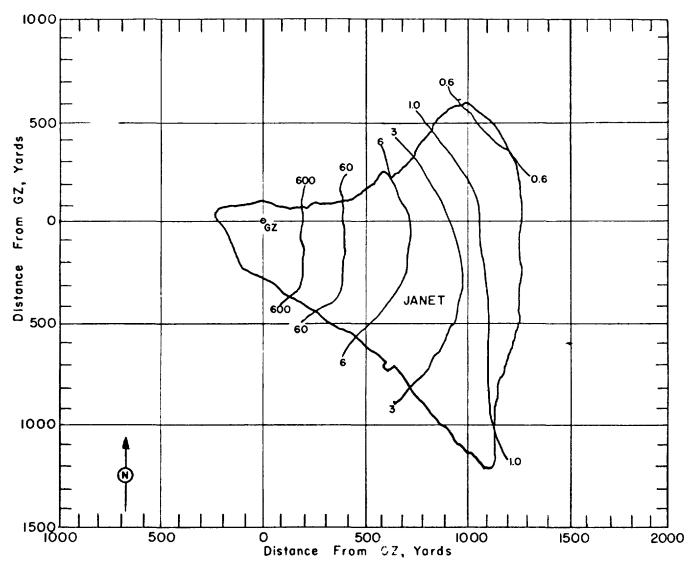


Figure 19. Operation GREENHOUSE - Easy. Shot Island dose rate contours in r/hr at H+l hour.

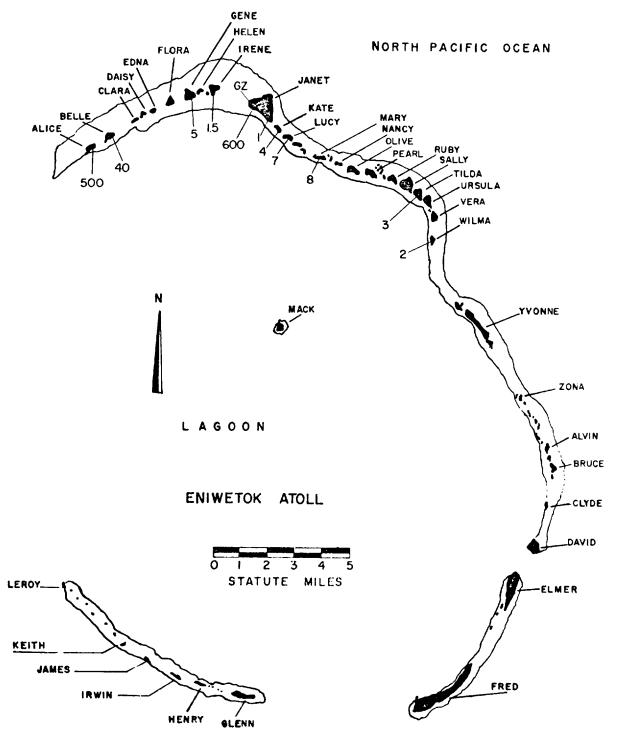


Figure 20. Operation GREENHOUSE - rates in r/hr at H+l hour.

Easy. Atoll dose

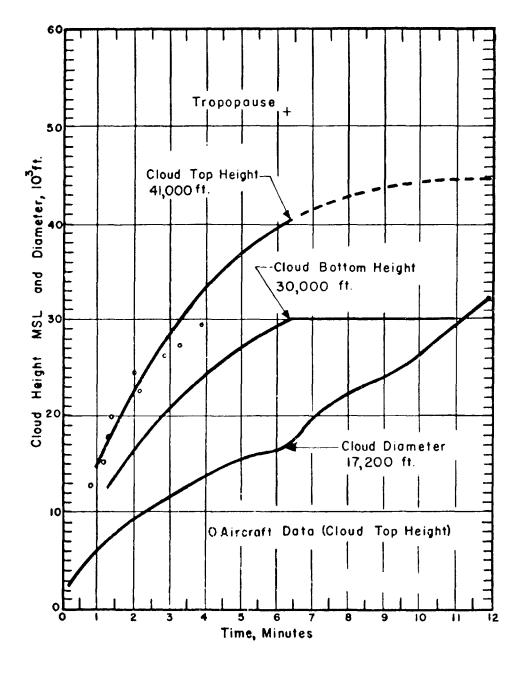
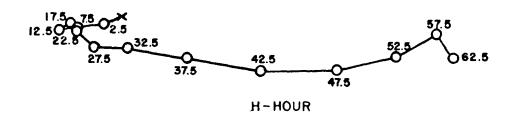
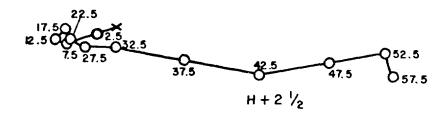


Figure 21. Cloud Dimensions: Operation GREENHOUSE -

Easy.


TABLE 7 ENIWETOK WIND DATA FOR OPERATION GREENHOUSE -EASY


Altitude $H-3\frac{1}{2}$ hour		ours	s H-hour		H+21 hours		$H+8\frac{1}{2}$ hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed_	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph	degrees	mph
Surface	050	16	060	16	070	17	070	20
5,000	100	09	080	13	070	16	090	06
10,000	070	08	090	06	100	05	200	14
1.4,000	210	03			220	07	210	07
15,000			240	06	(230)	(07)	(230)	(08)
16,000	280	07			250	07	260	10
20,000	310	03	330	04	360	05	Calm	Calm
25,000	320	13	350	13	300	80	310	22
30,000	260	20	270	28	270	15	270	40
35,000	270	28	280	31	280	35	270	46
40,000	280	32	280	37	280	40	270	40
45,000	260	35	270	38	260	37	240	28
50,000	270	28	260	32	260	30	250	30
55,000	350	35	240	23	340	12	230	06
60,000	330	15	330	15			~	

- 1. Numbers in parentheses are estimated values.
- H-hour values were determined by interpolating between the $H-3^{1}_{2}$ and $H+2\frac{1}{2}$ hour values.
- 3. Tropopause height was 53,000 ft MSL at H-hour.
 4. At H-hour at a pressure of 1,000 mb the temperature was 25°C and the dew point 21°C.

Rise rate: 5000 ft/hr

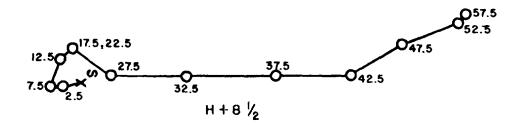


Figure 22. Hodographs for Operation GREENHOUSE -

Easy.

OPERATION GREENHOUSE -

George

PPG time GMT 9 May 1951 8 May 1951 DATE:

TIME: 0930 2130 Sponsor: LASL

SITE: PPG - Eniwetok - Ruby 11° 37' 37" N 162° 18' 53" E Site elevation: Sea level

HEIGHT OF BURST: 200 ft

TYPE OF BURST AND PLACEMENT: Tower burst over coral soil

56,000 ft MSL CLOUD TOP HEIGHT: CLOUD BOTTOM HEIGHT: 41,000 ft MSL

REMARKS:

The survey readings on the shot island were obtained at H+24 hours and extrapolated to H+1 hour using the $t^{-1\cdot 2}$ decay approximation. Since the winds were from the west-southwest throughout their entire structure, no radiation reading higher than twice background was observed on islands beyond 2,000 yards from ground zero.

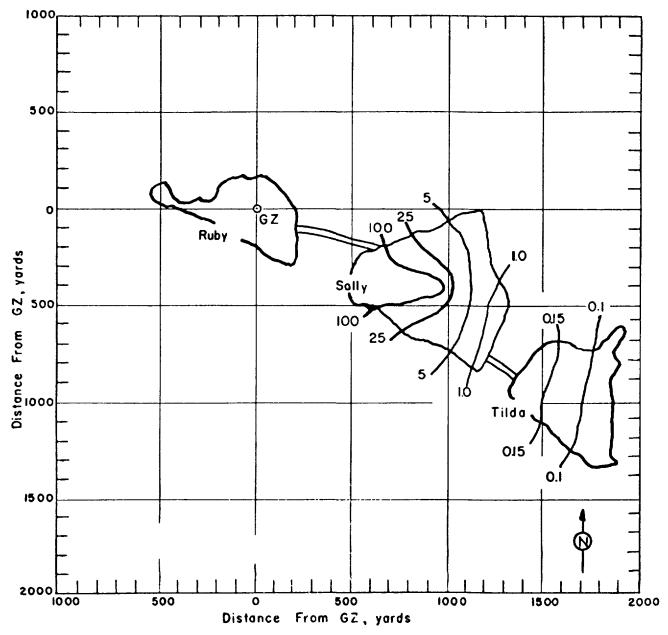


Figure 23. Operation GREENHOUSE - George. On-site dose rate contours in r/hr at H+l hour.

Figure 24. Cloud Dimensions: Operation GREENHOUSE -

George.

TABLE 8 ENIWETOK WIND DATA FOR OPERATION GREENHOUSE -

GEORGE

Altitude	H-hou	H-hour		H+6 hours		ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	240	14	260	16	130	12
4,000	260	35				
5,000	(250)	(32)	260	25	220	15
6,000	250	31				
10,000	250	48	270	31	260	26
14,000			260	30	270	41
15,000	260	26	(260)	(31)	(260)	(40)
16,000			260	32	260	39
20,000	230	23	220	32	260	23
25,000	190	25	200	23	240	37
30,000	230	24	180	20	180	33
35,000	270	20	160	18	160	31
40,000	290	18	200	13	160	26
45,000	170	03	010	07	170	16
50,000	310	15		- -	030	41
55,000	020	12				

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 55,000 ft MSL at H-hour.
- 3. At H-hour at a pressure of 1,000 mb the temperature was 27°C and the dew point 23°C.

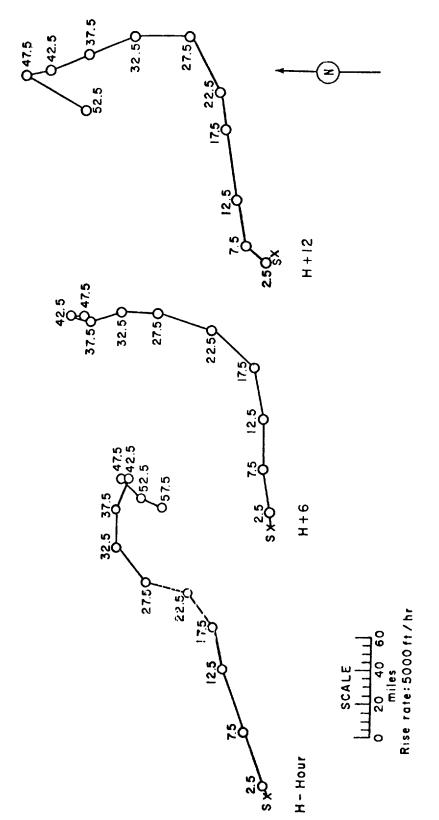


Figure 25. Hodographs for Operation GREENHOUSE -

George.

OPERATION GREENHOUSE -

Item

PPG Time GMT

DATE: 25 May 1951 24 May 1951

TIME: 0617 1817

Sponsor: LASL

SITE: PPG - Eniwetok - Janet
11° 40' 23" N
162° 14' 55" E
Site elevation: Sea level

HEIGHT OF BURST: 200 ft

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 40,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

The survey readings of the shot island, Janet, were obtained by the Radiological Safety Organization at H+24 and H+72 hours and extrapolated to H+1 hour by the t^{-1.2} decay approximation. Most readings were obtained from a helicopter flying at an altitude of 10 to 20 feet and the observations were considered representative of readings 3 feet above ground. Such readings may be low by 20 to 50 percent.

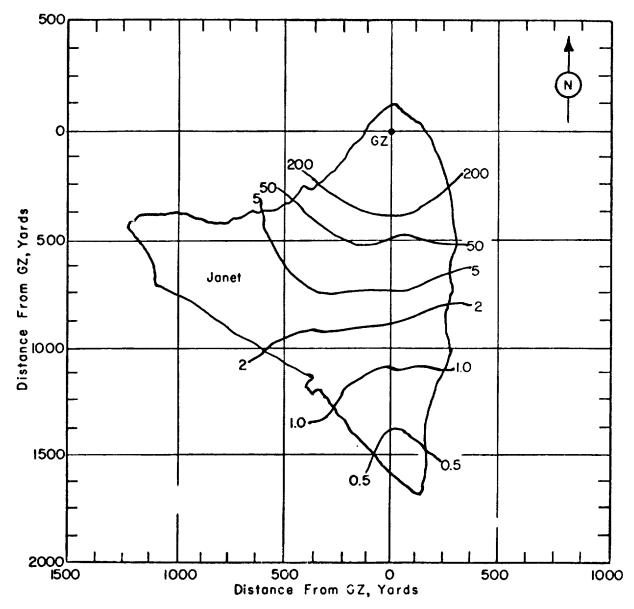


Figure 26. Operation GREENHOUSE - Item. Shot Island dose rates in r/hr at H+l hour.

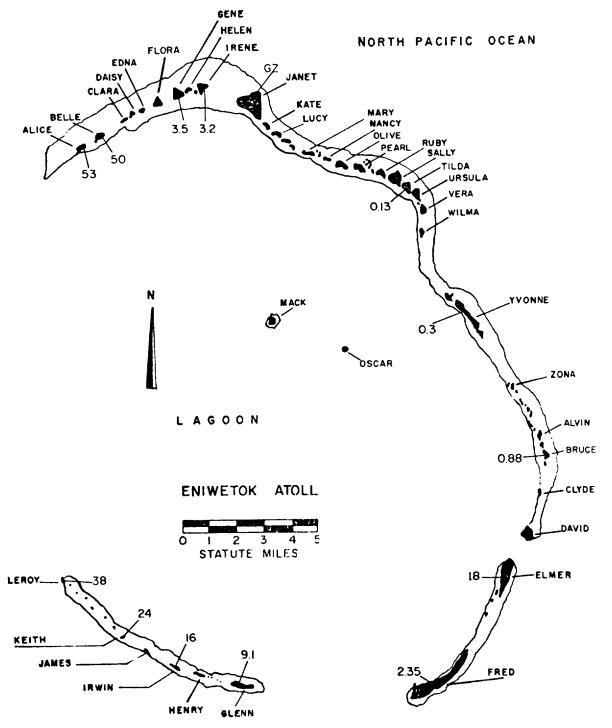


Figure 27. Operation GREENHOUSE - rates in r/hr at H+1 hour.

Item. Atoll dose

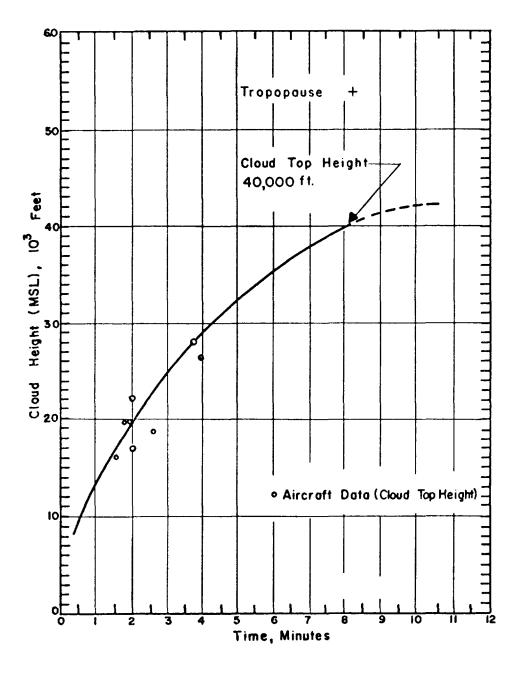


Figure 28. Cloud Dimensions: Operation GREENHOUSE -

Item

TABLE 9 ENIWETOK WIND DATA FOR OPERATION GREENHOUSE -

ITEM

Altitude	H-hour		H+23/4 h	ours	$H+8\frac{3}{4}$ hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	070	15	070	22	070	15
5,000	090	16	080	17	090	15
10,000	090	05	060	02	\mathtt{Calm}	Calm
14,000	250	10	250	10	250	09
15,000	(260)	(09)	(260)	(09)	(270)	(10)
16,000	280	(08)	270	09	290	13
20,000	290	09	300	10	310	16
25,000	250	12	360	09	350	13
30,000	360	10			350	12
35,000	250	09			250	06
40,000	280	08				
45,000	150	08				
50,000	330	10				

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 55,000 ft MSL at H-hour.
- 3. At H-hour at a pressure of 1,000 mb the temperature was 31°C and the dew point 23°C.

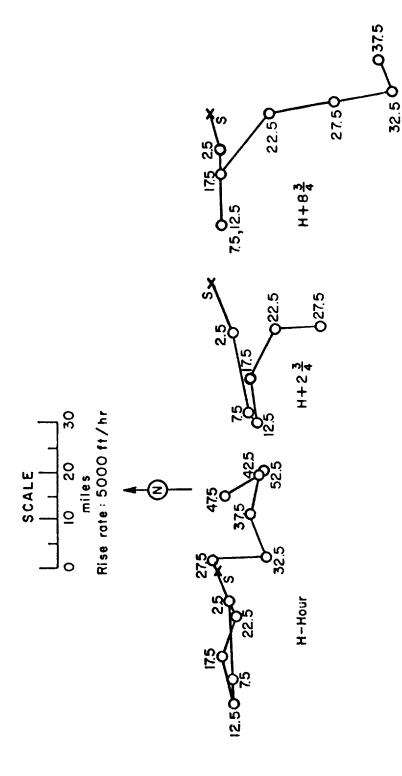


Figure 29. Hodographs for Operation GREENHOUSE -

Item.

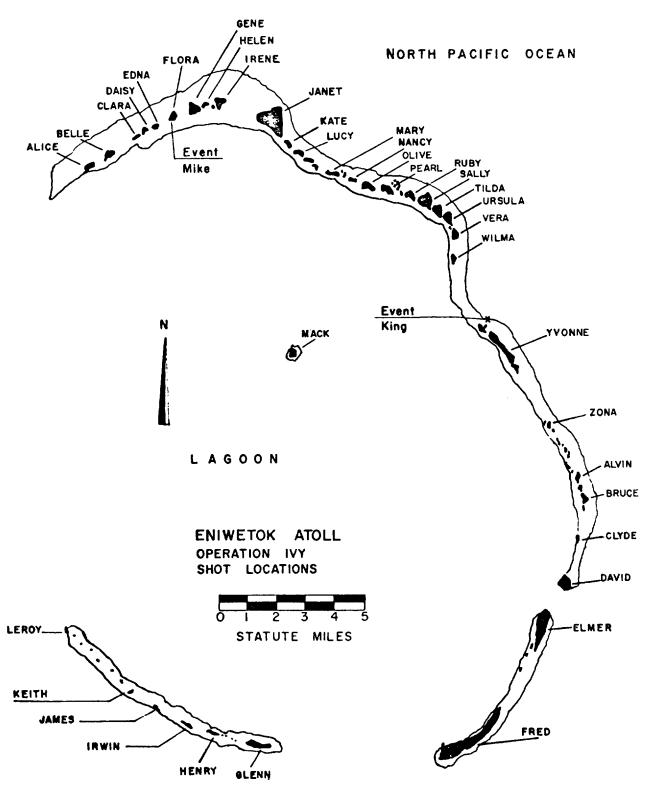


Figure 30. Operation IVY, Shot Locations.

OPERATION IVY - Mike

PPG time GMT Sponsor: LASL

 DATE:
 1 Nov 1952
 31 Oct 1952

 TIME:
 0715
 1915
 SITE:
 PPG - Eniwetok - Flora

l1° 14' 14" N 162° 11' 41" E

Site elevation: Sea level

TOTAL YIELD: 10.4 mt
HEIGHT OF BURST: Surface

FIREBALL DATA:

Time to 1st minimum: 270 to 310 msec

Time to 2nd maximum: 3 to 3.5 sec

TYPE OF BURST AND PLACEMENT:

Radius at 2nd maximum: NM Surface burst on coral soil and water

CLOUD TOP HEIGHT: 98,000 ft MSL CLOUD BOTTOM HEIGHT: 59,000 ft MSL

CRATER DATA: Diameter: 6,240 ft

Depth: 164 ft

REMARKS:

Most of the fallout occurred over the open sea. Documentation of the fallout was thus limited to the islands and the lagoon of Eniwetok atoll. The lagoon dose rates were determined by multiplying the readings obtained on rafts by the factor 7. This factor is based upon the ratio of Operation Jangle field dose rates and readings taken over flat plates after their removal from the contaminated area. The data presented for the lagoon stations can thus be considered as approximations only. The island dose rates are based upon groundand aerial-survey readings and were adjusted to H+l hour by using the $t^{-1\cdot 2}$ law to approximate the decay.

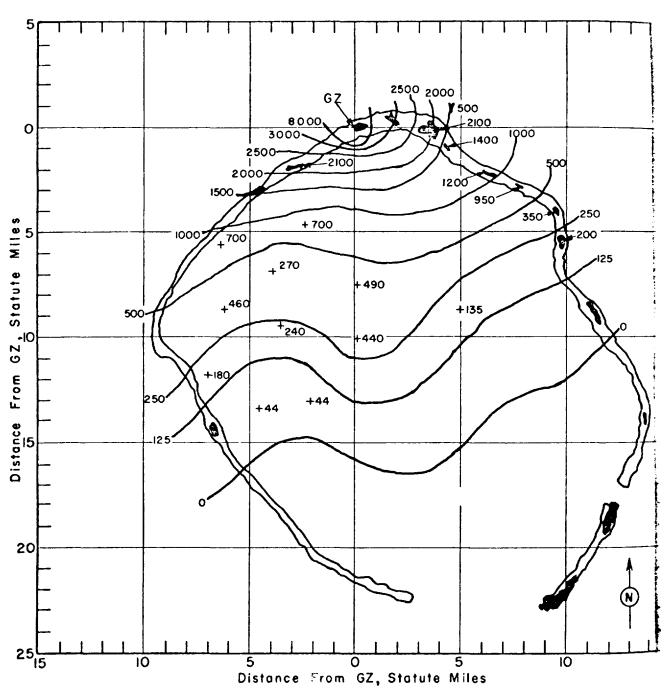


Figure 31 Operation IVY - Mike. Atoll dose rate contours in r/hr at H+l hour.

Figure 32 . Cloud Dimensions: Operation IVY - Mike.

Altitude	H-hou	r
(MSL)	Dir	Speed
feet	degrees	mph
Surface	090	05
5,000	090	16
10,000	095	17
15,000	115	17
20,000	125	14
25,000	170	15
30,000	220	20
40,000	230	17
50,000	220	14
60,000	040	09
70,000	100	23
8 0, 000	085	09
90,000	280	12
100,000	250	23
110,000	300	23
120,000	040	06
130,000	Calm	Calm
135,000	Calm	Calm

- Tropopause height was 56,000 ft MSL at H-hour.
 The surface air pressure was 14.66 psi, the temperature 29.4°C and the dew point 23.8°C.

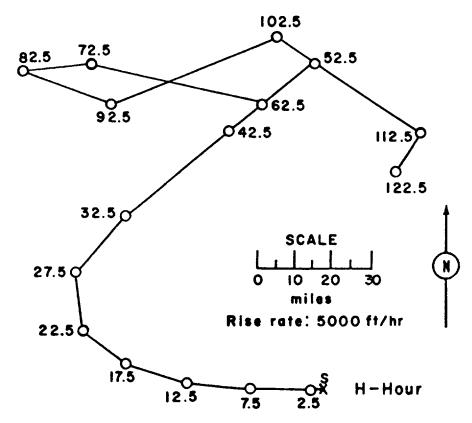


Figure 33. Hodograph for Operation IVY - Mike.

OPERATION IVY -

King

PPG time

GMT

DATE: 16 Nov 1952 15 Nov 1952

TIME: 1130 2330

Sponsor: LASL

SITE: PPG - Reef northeast of

north end of Yvonne

11° 33' 44" 162° 21' 09" E

TOTAL YIELD: 500 kt

Site elevation: Sea level

1,480 ft

FIREBALL DATA:

Time to 1st minimum: 62 to 70 msec

Time to 2nd maximum: 700 to 850 msec Radius at 2nd maximum: 1,968 ft

CRATER DATA: No crater

CLOUD TOP HEIGHT:

67,000 ft MSL

CLOUD BOTTOM HEIGHT: 51,800 ft MSL

TYPE OF BURST AND PLACEMENT:

Air burst over coral soil and

sea water

HEIGHT OF BURST:

REMARKS:

Contamination of the islands of Eniwetok atoll was generally masked by the contamination resulting from the earlier Mike shot. The dose rates indicated in figure 102 are estimates based upon readings taken from helicopters flying 25 feet above the ground. The estimates are corrected for dose-rate levels existing on D-1.

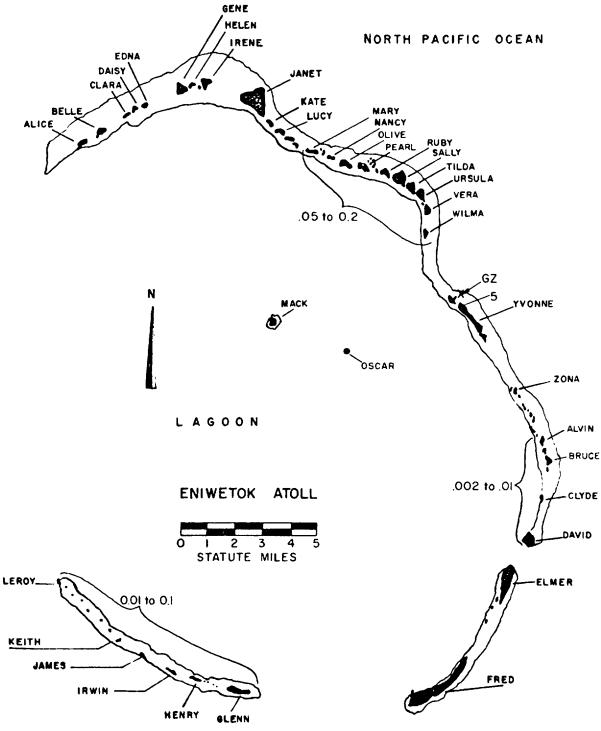


Figure 34. Operation IVY - King.
Atoll dose rates in r/hr at H+l hour.

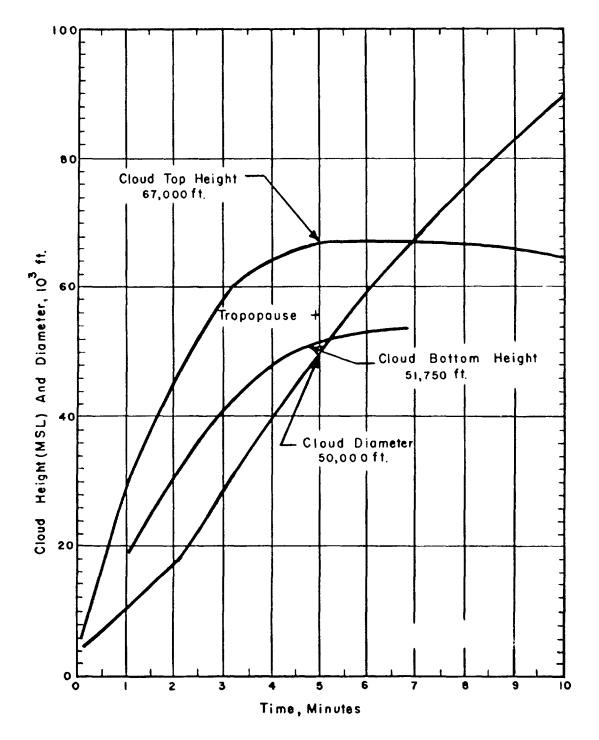


Figure 35. Cloud Dimensions: Operation IVY -

King.

TABLE 11 ENIWETOK WIND DATA FOR OPERATION IVY - KING

12124-2	H-hour		TILOI 1		TLOI	W+O- houng		
Altitude				nours		hours		
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed		
feet	degrees	mph	degrees	mph	degrees	mph		
	0570	00	000	0.0	050	ol.		
Surface	070	20	080	22	070	5/4		
5,000	105	23	080	26	090	26		
10,000	085	23	070	20	090	20		
14,000			070	12	080	13		
15,000	069	19						
16,000	060	16	040	12	070	17		
20,000	059	20	050	23	040	25		
25,000	056	24	050	33	050	05		
30,000	018	13	310	13	300	06		
35,000	(351)	(21)	330	26	260	18		
40,000	325	28	290	44	070	33		
45,000	(322)	(29)	320	36	280	45		
50,000	320	30	230	08	050	17		
55,000	(021)	(22)	080	20	080	26		
60,000	`o83	14	0 9 0	33	070	43		
65,000	(079)	(17)	090	24	090	32		
70,000	076	21	070	05	130	23		
75,000	288	07	330	18	300	05		
80,000		- 1	320	18	340	23		
85,000			310	09	020	08		
90,000			320	06				
95,000			260	32				
• •				-				

- 1. Numbers in parentheses are estimated values.
- Tropopause height was 56,000 ft MSL at H-hour.
 The surface air pressure was 14.66 psi, the temperature 28.0°C and the dew point 23.5°C.

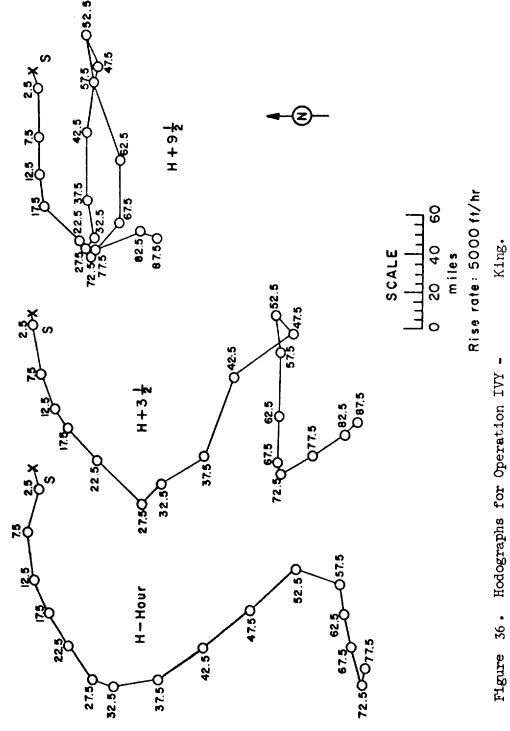
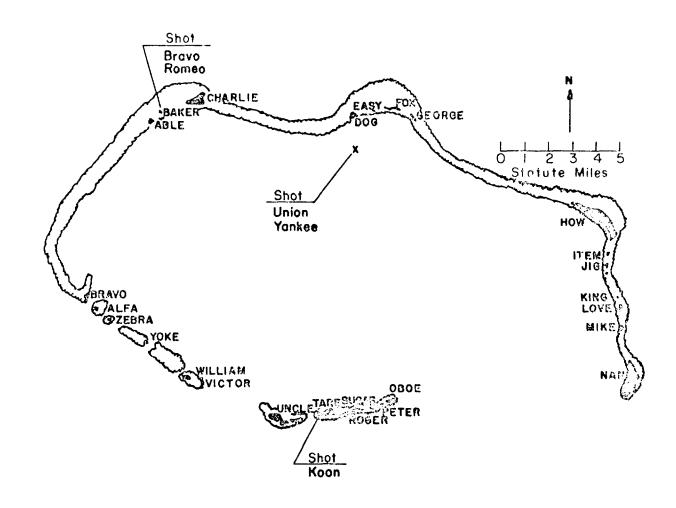



Figure 36. Hodographs for Operation IVY -

60

BIKINI ATOLL OPERATION CASTLE SHOT LOCATIONS

Figure 37. Operation CASTLE, Shot Locations.

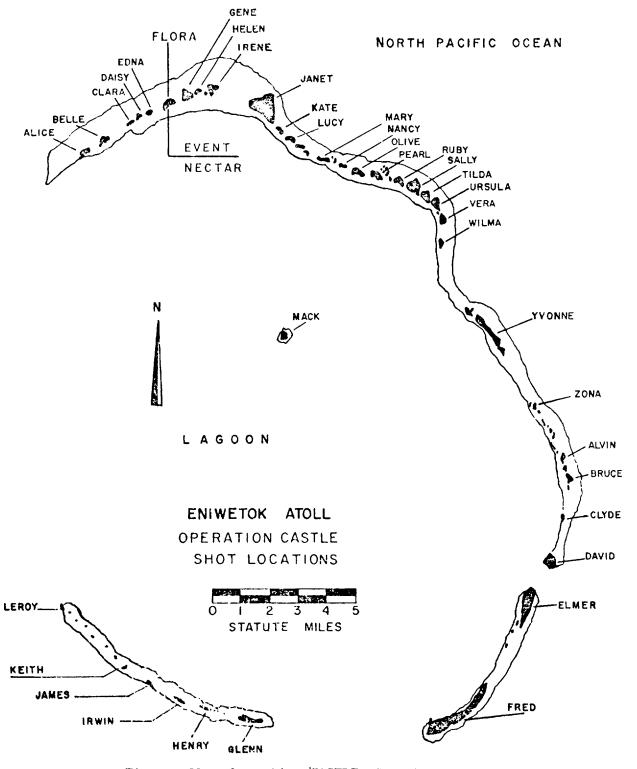


Figure 38. Operation CASTLE, Shot Locations.

OPERATION CASTLE -

Bravo

PPG Time GMT

DATE: 1 Mar 1954 28 Feb 1954

TIME: 0645 1845

TOTAL YIELD: 15 Mt

FIREBALL DATA:

Time to 1st minimum: 313 to 350 msec Time to 2nd maximum: 3.54 to 3.95 sec Radius at 2nd maximum: 9,512 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from platform on Coral soil

Sponsor: LASL

SITE: PPG - Bikini - on reef between

Baker and Charlie
13.0 hg/ 27" N
1650 16' 25" E
Site elevation: Scalevel

HEIGHT OF BURST: 7 ft

CLOUD TOP HEIGHT: 114,000 ft

CRATER DATA: Diameter: 6,000 ft

CLOUD BOTTOM HEIGHT: 55,300 ft

Depth: 240 ft
Lip: Apparently
washed away

REMARKS:

The on-site fallout pattern was constructed from survey measurements on Bikini Atoll, and from samples obtained with the total collectors and gummed paper collectors. The free-floating sea stations were not in the correct location to receive primary fallout. The data were extrapolated to H+1 hour by the composite gamma-ionization-decay curve obtained from samples measured in the laboratory.

This is the only megaton shot where some downwind land areas were unexpectedly contaminated; thus, partial documentation of fallout effects was possible. However, the major portion of the fallout occurred over the open ocean and was not documented. Because this shot is one of those used as the basis of fallout prediction for megaton yield weapons, three off-site fallout patterns are presented. The most widely known pattern is shown in Figure 40. It was constructed immediately after the event from the preliminary data available at Eqs, AFSWP. The second pattern was constructed by NRDL by establishing an experimental model; the field data plus a thorough analysis of the wind structure existing at and after shot time was used. The third pattern was constructed by PAND Corp., by supplementing field observations with model calculations.

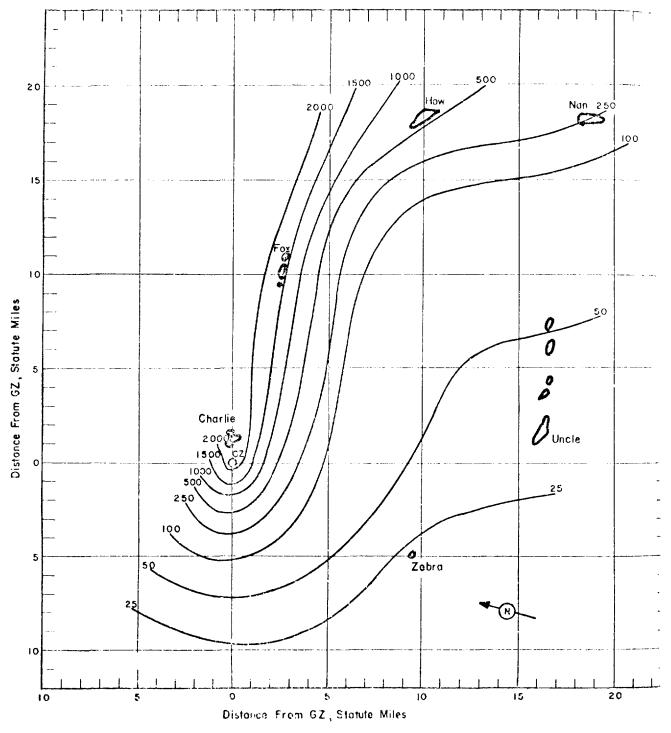


Figure 39. Operation CASTLE - Bravo.
On-site dose rate contours in r/hr at H+1 hour.

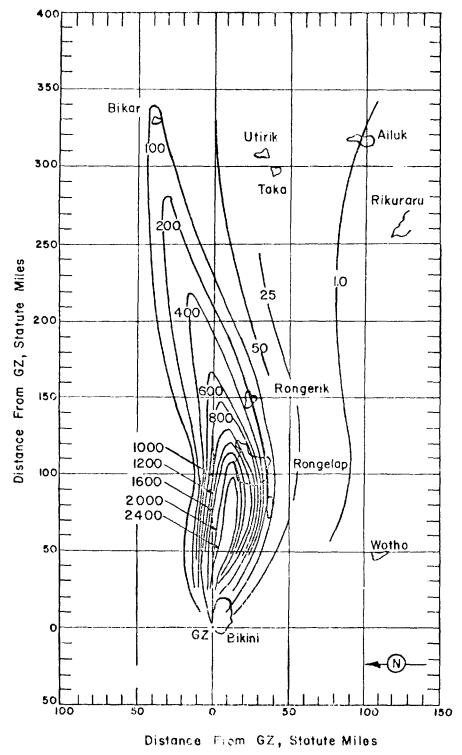


Figure 40. Operation CASTLE - Bravo.
Off-site dose rate contours in r/hr at H+1 hour (AFSWF).

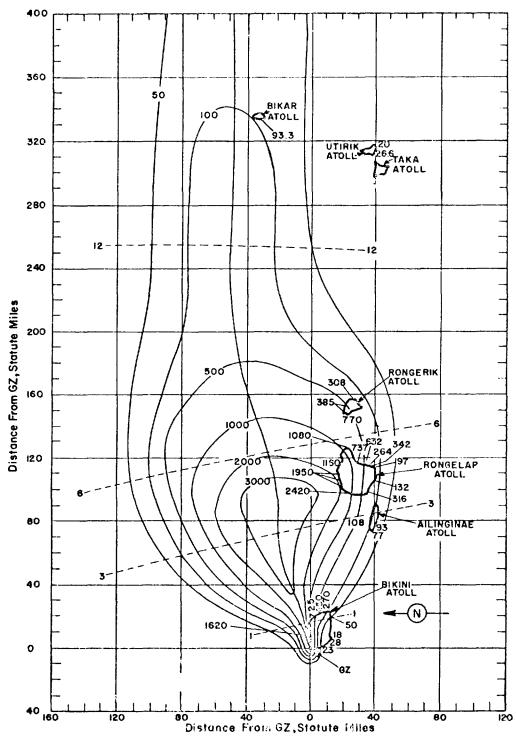


Figure 41 Operation CASTLE - Bravo.
Off-site dose rate contours in r/hr at H+l hour (NRDL).

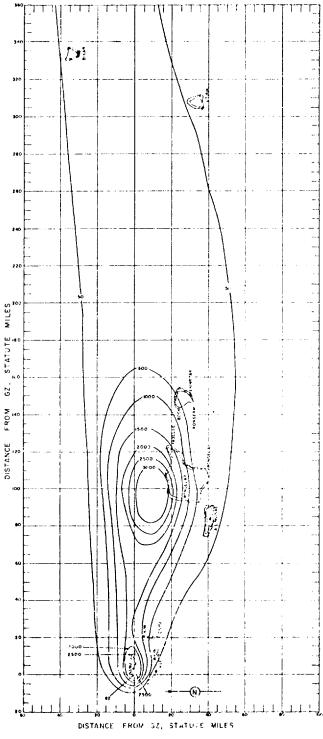


Figure 42. Operation CASTLE - Bravo.
Off-site dose rate contours in r/hr at H+l hour (RAND).

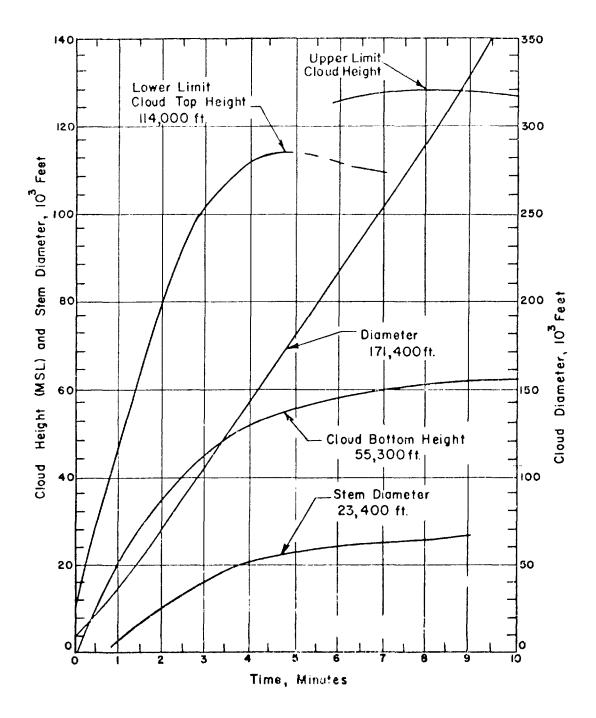


Figure 43. Cloud Dimensions: Operation CASTLE - Bravo.

TABLE 12 WIND DATA FOR OPERATION CASTLE - BRAVO

Altitude	II-ho	ur	H+3 h	iours	H46 hours		
(MSI.)	Dir	Speed	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	degrees	mph	
Surface	060	J)‡	070	17	060	50	
1,000	070	20					
2,000	090	21	070	23	090	16	
3,000	090	20					
4,000	090	16	090	12	100	16	
5,000	(100)	(10)	(090)	(10)	(090)	(13)	
6,000	120	05	080	13	080	09	
7,000	310	05					
8,000	31.0	05	300	07	350	03	
9,000	320	08					
10,000	310	06	1 50	13	300	17	
12,000	310	12	320	21	330	17	
14,000	290	16	330	12	300	1.2	
15,000	(290)	(15)	(330)	(14)	(300)	(12)	
3.6,000	290	15	320	17	300	12	
18,000	290	15	300	26	310	16	
20,000	280	15	290	26	290	20	
25,000	260	22	21.0	25	250	28	
30,000	250	30	230	36	250	33	
35,000	2/10	40			260	55	
40,000	230	140			250	51	
45,000	250	52			260	51	
50,000	250	36			270	92	
55,000	200	18			350	1 3	
57,000	340	31					

- 1. Numbers in parentheses are estimated values.
- 2. H-hear wind data was obtained on board the U.S.S. Curtiss.
- Tropopause height was 55,000 ft MJL.
 At H-hour the sea level pressure was 1006.1 mb, the temperature 80°F, the dew point 72°F and the relative humidity 77%.

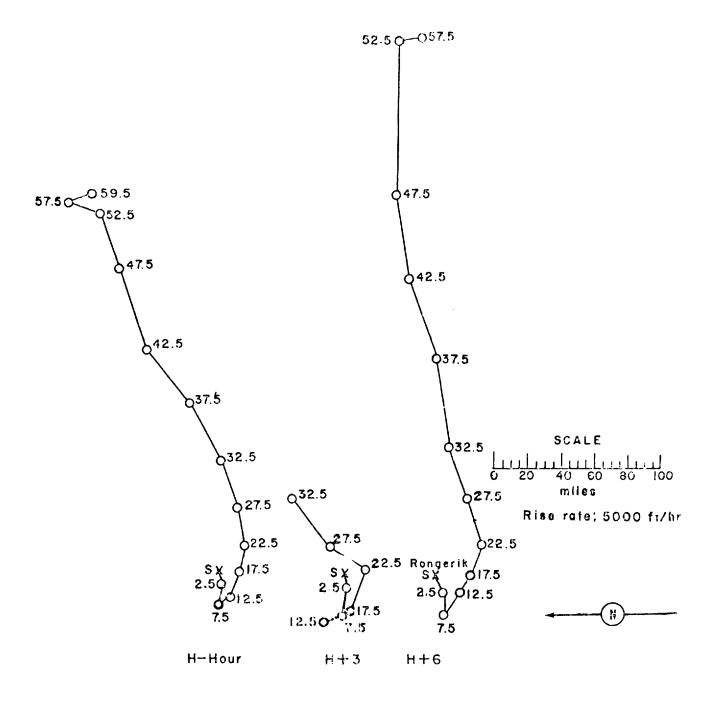


Figure 44. Hodegraphs for Operation CASTLE -

Bravo.

OPERATION CASTLE

- Romeo

PPT time GMT27 Mar 1954 26 Mar 1954 DATE:

Sponsor: LASL

TIME: 0630 1.830

SITE: PPG - Bikini - Shot 1 Crater
110 411 27" N

165° 16' 23" E Site elevation: Sea level

TOTAL YIELD: 11 Mt

HEIGHT OF BURST: 7 ft

CLOUD TOP HEIGHT: 110,000 ft MSL CLOUD BORTOM HEIGHT: 48,500 ft MSL

TYPE OF BURST AND PLACEMENT:

Surface burst from barge on water Water depth: 240 ft

RFMARKS:

The individual island dose rates were taken from aerial surveys by the Radiological Safety organization and corrected to H+1 hour with the $t^{-1\cdot 2}$ decay approximation. The contamination due to previous shots was subtracted.

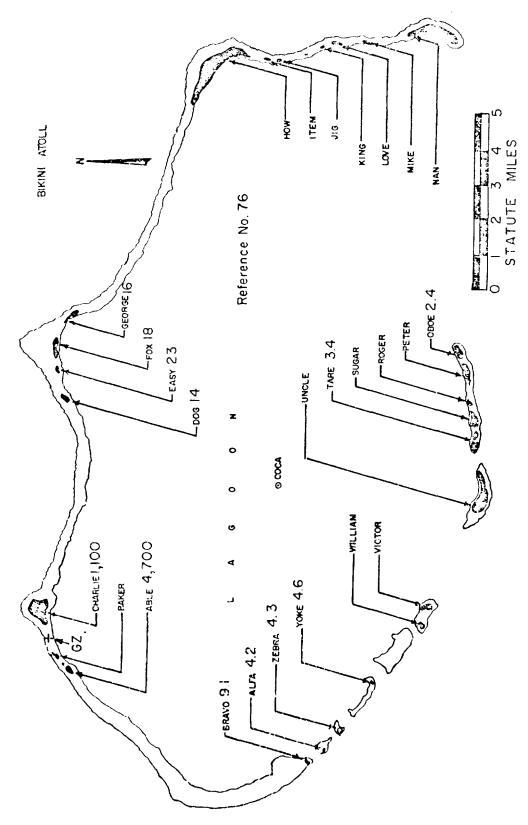


Figure 45. Operation CASTLE - Romeo. Island dose rates in r/hr at H÷l hour.

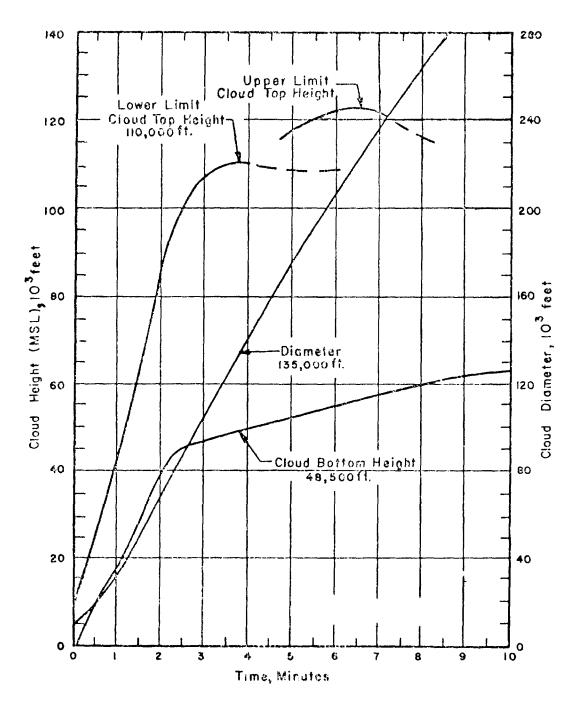


Figure 46 . Cloud Dimensions: Operation CASTLE -

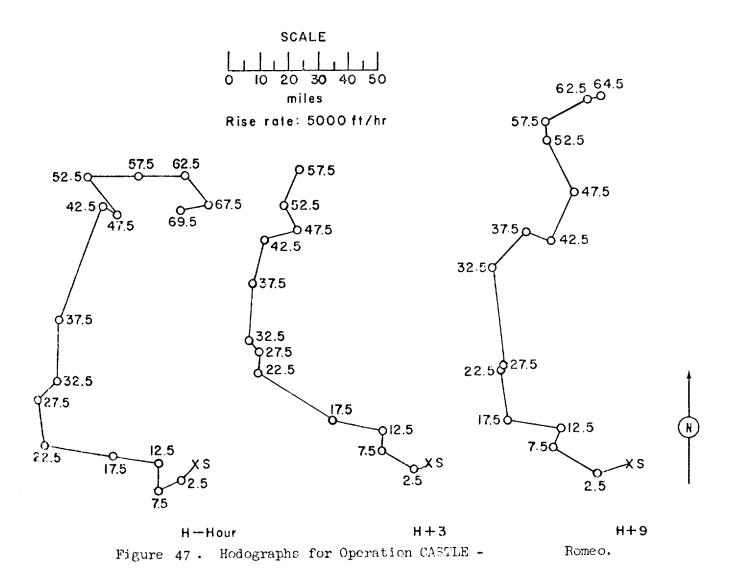

Romeo.

TABLE 13 BIKINE WIND DATA FOR OPERATION CASTLE-

ROMEO

Altitude	II-hour		H+3 }	ours_	H+9 hours		
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	degrees	mph	
Surface	040	12	070	12	070	20	
1,000	060	15	070	17	060	21	
2,000	070	16	070	17	070	18	
3,000	060	15	070	$1l_{4}$	090	21	
4,000	060	13	090	10	110	21	
5,000	060	80	120	12	120	17	
6,000	080	06	100	13	(140)	(15)	
7,000	160	07	160	14	150	15	
8,000	170	09	140	06	170	1.2	
9,000			120	06	190	09	
10,000	180	09	180	06	200	06	
12,000	150	12	1,10	12	150	08	
14,000	100	12	100	13	110	17	
15,000	(100)	(15)	(100)	(17)	(100)	(18)	
16,000	090	17	090	22	(090)	(20)	
18,000	100	20	100	22	100	30	
20,000	100	23	120	29	(080)	(17)	
25,000	170	16	180	07	200	02	
30,000	220	09	130	05	170	32	
35,000	180	21	180	20	220	15	
40,000	200	42	190	15	290	80	
45,000	300	06	250	10	200	17	
50 , 000	J)+O	17	150	10	150	20	
55,000	270	17	200	12	170	05	
56,000			160	07			
60,000	270	15			240	15	
62,000				~-	260	12	
65,000	320	12					
67,000	080	25					

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was obtained on board the U. S. S. Curtiss.
- 3. Tropopause height was 55,000 ft MSL.
- 4. At H-hour the sea level pressure was 1012.4 mb, the temperature 80°F, the dew point 72°F and the relative humidity 77%.

OPERATION CASTLE

- Koon

 PPG time
 GMF

 DATE:
 7 Apr 1954
 6 Apr 1954

 TLME:
 0620
 1820

Site
TOTAL YIELD: 110 kt

TOTAL TIME. THE KC

FIREBALL DATA:
Time to 1st minimum: 52.5 ± 2 msec

Time to 2nd maximum: NM Radius at 2nd maximum: NM

TYPE OF BURST AND PLACEMENT:

Surface burst from platform on coral soil

Sponsor: UCRL

SITE: PPG - Bikini - Tare
11° 29' 48" N
165° 22' 03" E
Site elevation: Sea level

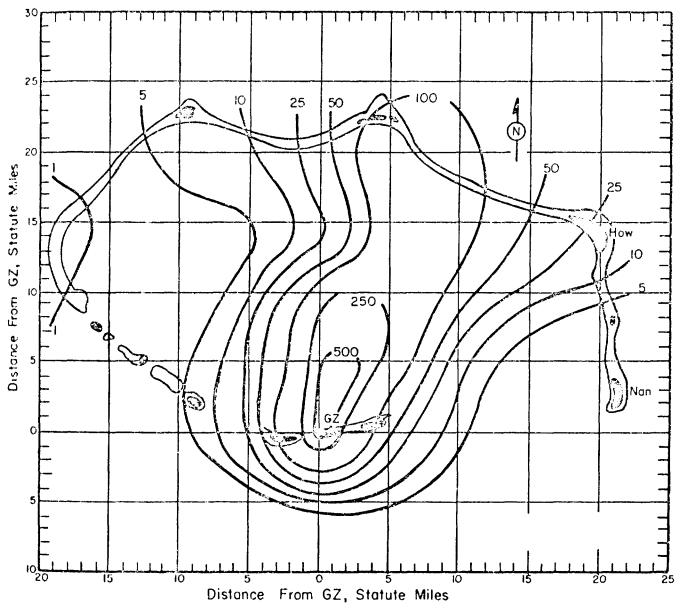
MINGHT OF BURGT: 13.6 ft

CLOUD TOP HEIGHT: 53,000 ft MSL CLOUD BOTTOM HEIGHT: NM

CRATER DATA: Diameter: 800 ft Depth: 75 ft

REMARKS:

The on-site fallout pattern was constructed from survey readings made by technical project personnel and by the Radiological Safety organization, plus conversion of activity measurements of fallout samples collected on rafts and free-floating buoys anchored in the lagoon. The fallout occurred ideally with respect to the measurement stations so that more readings than usual were available. The dose-rate readings were extrapolated to H+1 hour by using actual field decay rates.



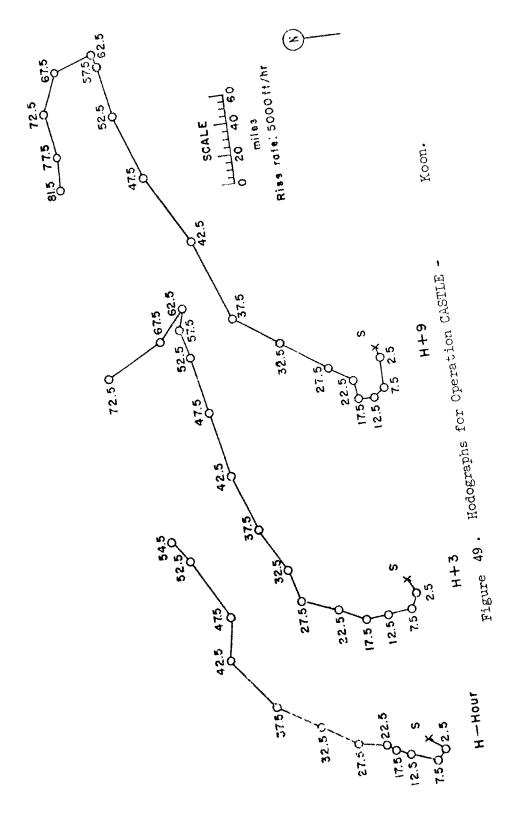

Figure 48. Operation CASTLE - Koon.
On-site dose rate contours in r/hr at H+1 hour.

TABLE 14 BIKINI WIND DATA FOR OPERATION CASTLE -

KOON

Altitude	H-hc	ur		OUYS	H+9 hours		
(MSL)	Dir	Speed	Dir	Speed	Di r	Speed	
feet	degrees	mph	degrees	mliji	degrees	mplı	
Surface	0,10	23	070	20	080	15	
1,000	070	20					
2,000	060	18	080	23	080	17	
3,000	090	09					
4,000	120	08	090	14	100	22	
5,000	(140)	(1.0)	(120)	(10)	(090)	(20	
6,000	170	1l;	150	10	080	17	
7,000	170	20					
8,000	190	16	160	$1l_{1}$	100	15	
9,000	200	16					
10,000	200	16	170	14	140	07	
12,000	180	20	160	14	150	12	
14,000	200	09	170	1.0	180	15	
15,000	(200)	(10)	(170)	$(1^{1}4)$	(1.80)	(09	
16,000	190	12	170	17	180	08	
18,000	200	12	180	22	280	03	
20,000	220	05	510	18	260	12	
25,000	190	23	200	23	210	18	
30,000	210	25	250	214	220	36	
35,000	210	32	240	28	220	36	
40,000	230	39	250	38	250	55	
45,000	280	28	260	43	240	51	
50,000	5/10	140	260	37	250	47	
52,000	230	45					
55,000			250	21	260	33	
60,000			290	15	5/10	07	
65,000			130	17	160	26	
70,000			150	40	110	26	
75,000					080	29	
79,000					090	26	

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was obtained on board the U.S.S. Curtiss.
- Tropopause height was 53,000 ft MSL.
 At H-hour the sea level pressure was 1009.7 mb, the temperature 81°F, the dew point 75°F and the humidity 82%.

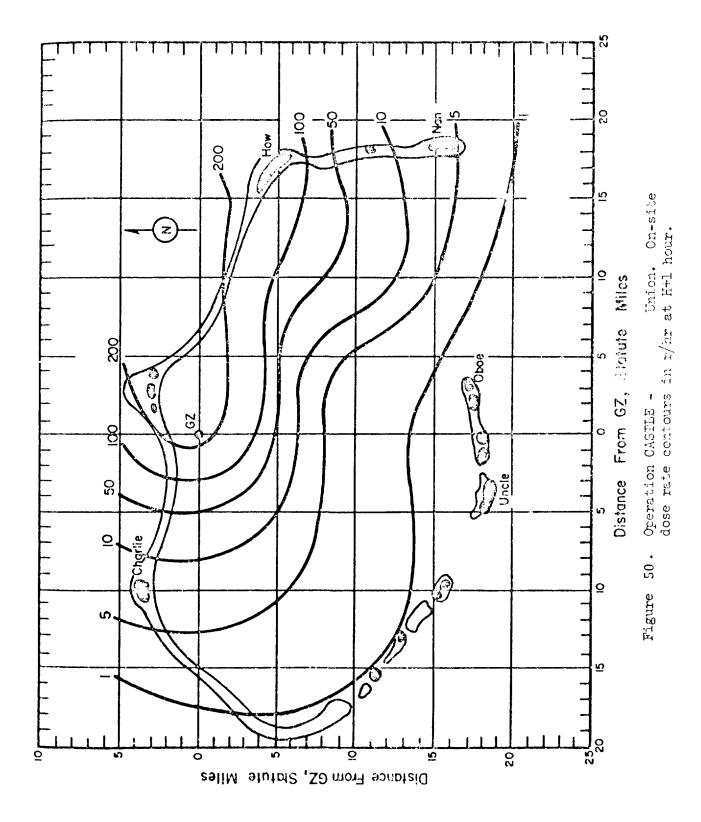
OPERATION CASTLE -

Union

<u>PFG time</u> <u>GMT</u> <u>DATE:</u> 26 Apr 1954 25 Apr 1954 TIME: 0605 1805

TOTAL YIELD: 6.9 Mt

Sponsor: IASL


STTE: PPG - Bikini - near Dog & Fox
11° 39' 59" N
165° 23' 14" E
Site elevation: Sea level

HEIGHT OF BURST: 7 ft
Water depth: 160 ft

CLOUD TOP HEIGHT: 94,000 ft MSL CLOUD BOTTOM HEIGHT: 51,500 ft MSL

REMARKS:

The on-cite fallout pattern was drawn from land survey readings made by technical project personnel and by the Radiological Safety organization, plus conversion of the activity to dose-rate readings of samples from fallout collectors. The shot location and the winds localized the radiation levels of military significance to the northeastern portion of the atoll. The dose-rate readings were extrapolated to H+l hour by using actual field-decay rates.

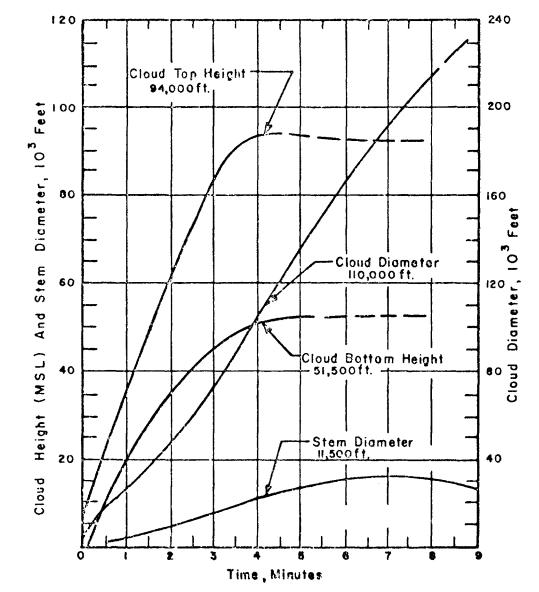


Figure 51. Cloud Dimensions: Operation CASTLE -

Union.

Altitude	II-hour		H+3	hours	H6 hours		
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	degrees	mph	
Surface	050	20	090	16	080	18	
1,000	060	5/4					
2,000	080	21	090	22	100	14	
3,000	090	20					
4,000	090	21	090	20	090	10	
5,000	(100)	(20)	(090)	(38)	(100)	(10)	
6,000	1.10	21	080	17	110	12	
7,000	120	21					
8,000	130	20	080	17	130	14	
9,000	120	18					
10,000	110	$1l_{+}$	100	16	1.30	15	
12,000	350	$O)^{\dagger}$	060	80	090	Oli	
14,000	360	07	020	08	360	07	
15,000	(300)	(18)	(010)	(10)	(350)	(08)	
16,000	240	29	360	12	340	09	
18,000	290	16	260	09	240	08	
20,000	260	17	220	20	230	114	
25,000	200	38	220	34	570	18	
30,000	250	46	290	50	250	33	
35,000	240	51	260	48	240	36	
40,000	250	46	260	48	270	39	
45,000	250	46	240	45	260	44	
50,000	260	32	210	214	260	50	
55, 000	220	10	110	29	150	29	
60,000	180	17	340	02	190	16	
65,000			100	33	090	20	
70,000			090	46	100	31	
75,000			090	58	110	50	
80,000			100	36	1.00	47	
85,000			080	62	1.20	147	
90,000			050	85			
95,000			320	78			

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was obtained on board the U. S. S. Curtiss.
- 3. Tropopause height was 57,000 ft MJD. At H-hour the sea level pressure was 1007.4 mb, the temperature 81°F, the dew point 76°F and the humidity 86%.

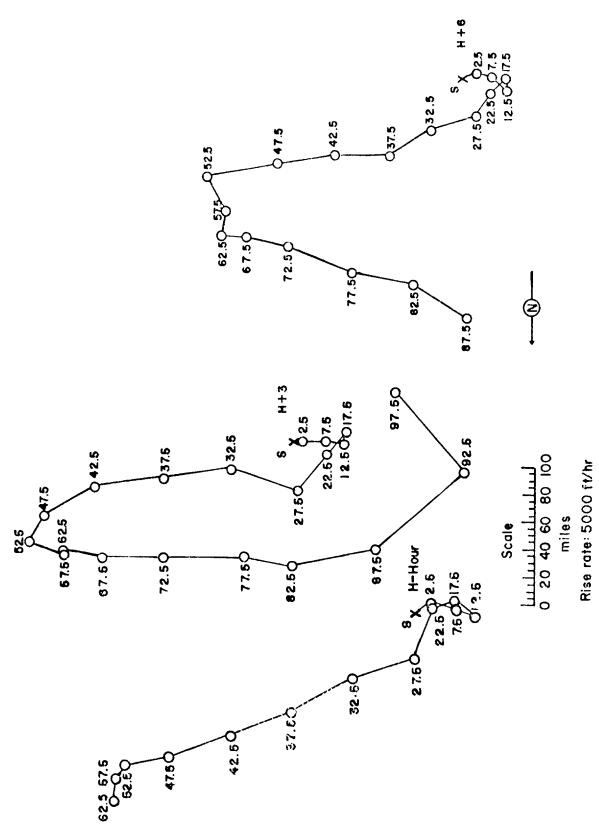


Figure 52. Hodographs for Operation CASTLE -

Union.

OPERATION CASTLE -

Yankee

PPG time GMF DATE: 5 May 1954 4 May 1954 TIME: 0610 1810 Sponsor: LASL

TOTAL YIELD: 13.5 Mt

SITE: PPG - Bikini - near Dog & Fox
11° 39' 56" N

11° 39' 56" N 165° 23' 13" E

Site elevation: Sea level

HEIGHT OF BURST: 7 ft

CLOUD TOP HEIGHT: 110,000 ft MSI-CLOUD POTTOM HEIGHT: 61,300 ft MSI-

TYPE OF EURST AND PLACEMENT:
Surface burst from barge on water

REMARKS:

The individual island dose rates were computed from the D+1 day aerial-survey readings of the Radiological Safety organization. The various readings were corrected to H+1 hour, using the t-1.2 relationship, and extrapolated to 3 ft above the surface, using the air-to-ground conversion factors determined later for the REDWING Flathead shot 102. The Fox, George, Nan, Oboe, Uncle and William readings were taken at ground level. All other readings were obtained by aerial survey. The off-site fallout pattern was documented for the first time by a combined water-surface reading, aerial survey, and water-sampling operation. The dose-rate readings were extrapolated to H+1 hour by using actual decay rates.

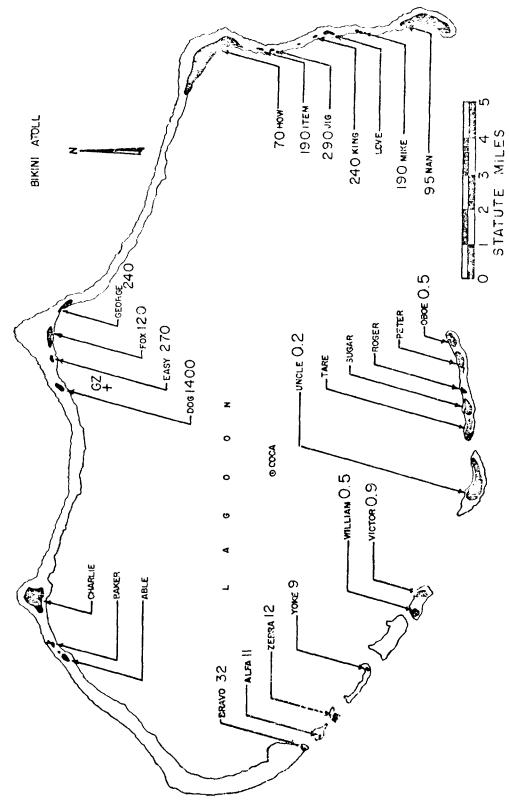


Figure 53. Operation CASTLE - Yankee. Island dose rates in r/hr at H+l hour.

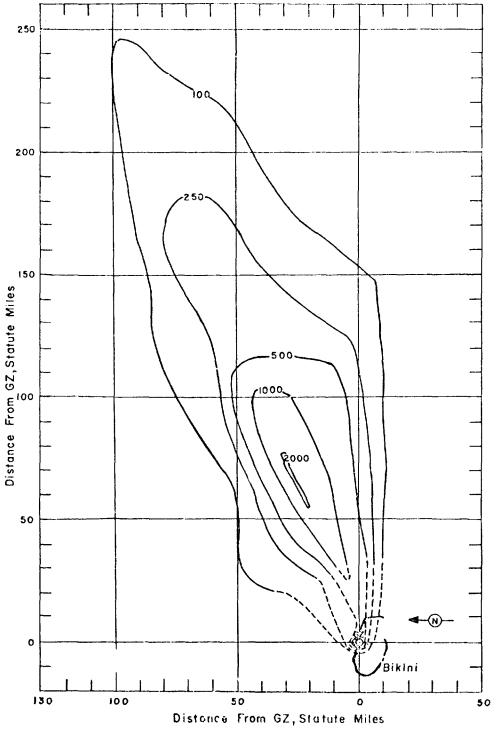


Figure 54. Operation CASTLE - Yankee.
Off-site dose rate contours in r/hr at H+l hour.

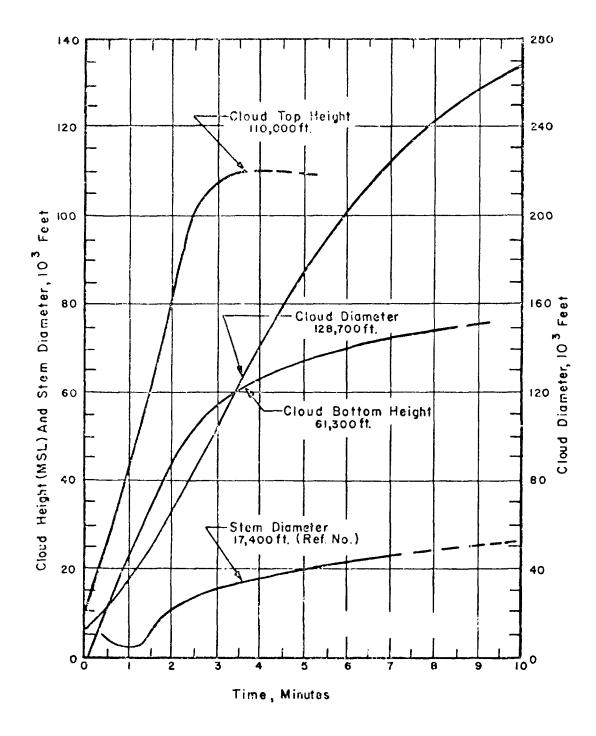
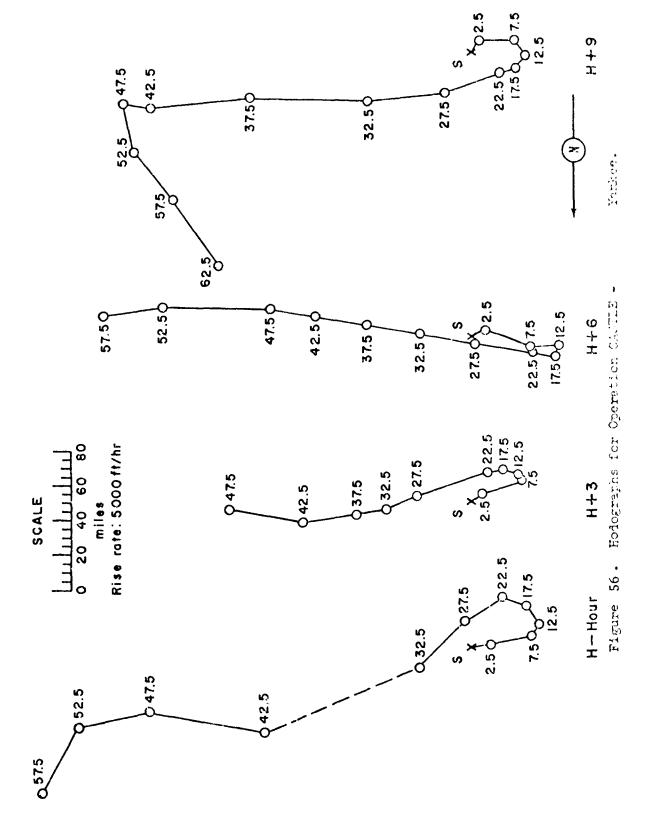



Figure 55. Cloud Dimensions: Operation CASTLE - Yankee.

TABLE 16 BIKINI WIND DATA FOR OPERATION CASTLE - YANKER

Altitude	H-hour		H+3 hours		H46 hours		H+9 hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Spec
feet	degrees	mph	degrees	ութի	degrees	niph	degrees	mph
Surface	080	28	050	18	060	20	020	15
1,000	070	26			~			~ ~
2,000	080	29	070	29	090	26	080	55
3,000	080	28						
4,000	080	26	070	25	110	30	090	23
5,000	(080)	(25)	(080)	(24)	(110)	(29)	(090)	(20)
6,000	070	53	090	23	13.0	29	090	18
7,000	070	21			~			- -
8,000	070	13	040	13	090	24	1.10	1.2
9,000	040	07						
10,000	020	06	320	02	080	1.7	140	10
12,000	010	06	290	02	060	80	180	07
14,000	340	06	350	09	1.10	03	210	05
15,000	(330)	(10)	(290)	(80)	(200)	(06)	(220)	(06)
16,000	320	15	240	07	290	`08	230	06
18,000	280	10	330	13	290	14	5/10	12
20,000	290	16	260	10	280	12	260	10
25,000	230	26	250	40	280	36	250	32
30,000	220	39	240	18	280	33	260	42
35,000			260	16	280	31	270	66
40,000			260	29	280	29	260	57
45,000	280	64	280	46	280	25	280	14
50,000	250	51			270	62	170	30
55,000	200	93			260	33	140	37
60,000					_ = -		140	46

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was obtained on board the U.S.S. Curtiss.
- 3. Tropopause height was 55,000 ft MSL.
- 4. At H-hour the sea level pressure was 2018.8 mb, the temperature 80.8°F, the dew point 75.0°F and the relative humidity 84%.

OPERATION CASTLE -

Nectar

PPG time GMT14 May 1954 13 May 1954 DATE:

TIME: 1820 0620

162° 11' 47" E Site elevation: Sea level

TOTAL YIELD: 1.69 Mt

HEIGHT OF BURST: 7 ft

Sponsor: LASL

SITE:

CLOUD TOP HEIGHT: 71,000 ft MSL CLOUD BOTTOM HELGHT: 40,500 ft MSL

TFG - Eniwetok -Ivy Mike Crater 11° 40' 14" N

TYPE OF BURST AND PLACEMENT:

Surface burst from barge on water

REMARKS:

The on-site fallout pattern was drawn from Radiological Safety organization data and by converting the readings obtained from fallout samples to equivalent dose-rate readings over land. Since the fallout went in a northerly direction from ground zero very few of the collecting stations received significant fallout. The fallout collected was primarily upwind fallout. Aerial survey was used for measurements north of the atoll, and two tugs gathered water samples throughout the fallout area. Analyses of the water samples, combined with an estimate of the depth of mixing, served to determine the land-equivalent exposure rate at a number of points. The aerial survey served to fill in the contours.

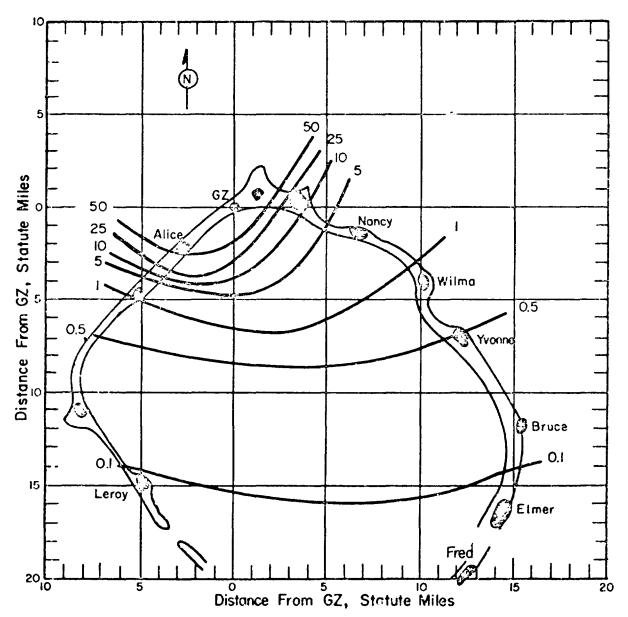


Figure 57. Operation CASTLE - Nectar. On-site dose rate contours in r/hr at H+l hour.

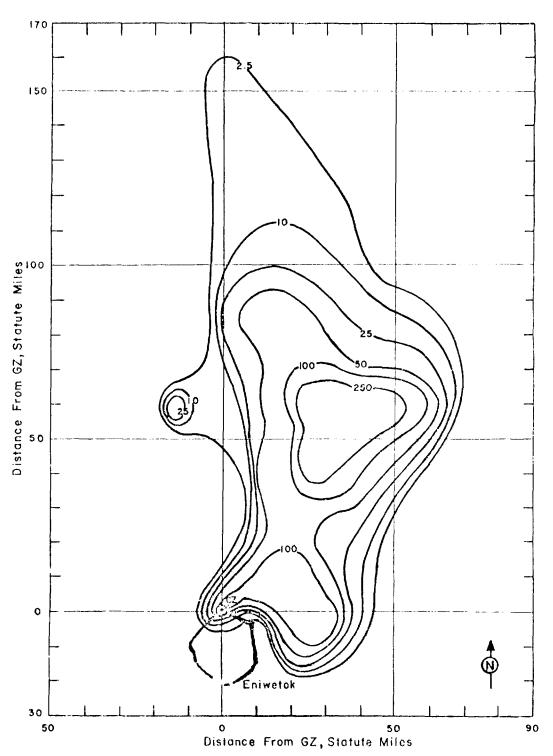
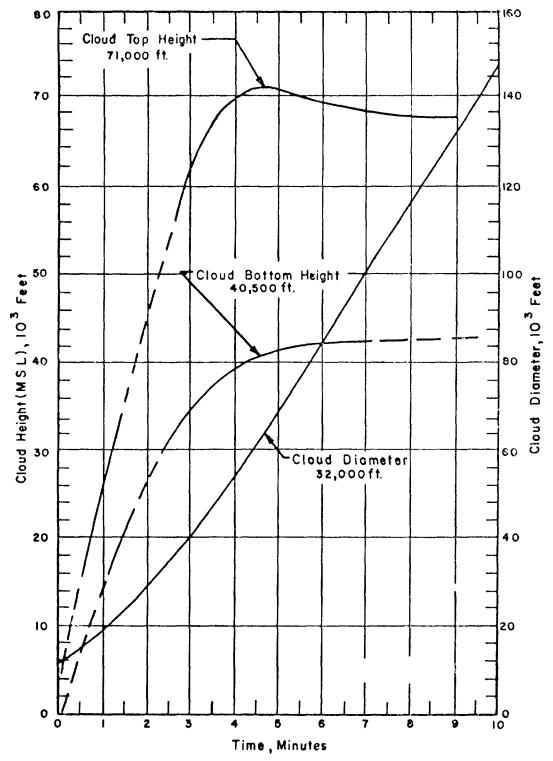
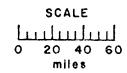


Figure 58. Operation CASTLE - Nectar.
Off-site dose rate contours in r/hr at H+1 hour.




Figure 59 . Cloud Dimensions: Operation CASTLE -

Nectar.

Altitude	H-hour		H+3 hc	ours	IH9 hours		
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	
fect	degrees	mph	degrees	mph	degrees	mph	
Surface	090	22	070	23	090	23	
1,000	090	24					
2,000	100	20	110	51+	100	20	
3,000	110	22					
4,000	110	22	1.10	20	340	16	
5,000	(110)	(18)	(100)	(16)	(150)	(16)	
6,000	110	16	100	14	160	1.7	
7,000	100	1,1+					
8,000	100	12	120	13	160	16	
9,000	1.10	13					
10,000	110	16	130	16	170	16	
12,000	120	20	140	12	190	20	
14,000	110	21	120	16	200	51	
15,000	(120)	(17)	(120)	(18)	(200)	(18)	
16,000	130	11/4	`120	18	200	17	
18,000	140	114	200	80	190	1.7	
20,000	130	09	150	21	190	15	
25,000	190	07	210	06	Calm	Calm	
30,000	230	19	200	14	Calm	Calm	
35,000	210	10	210	29	180	16	
40,000	210	29	210	31	1.80	1.0	
45,000	230	37	240	24	Calm	Calm	
50,000	280	40	280	27	Calm	Calm	
55,000	2 9 0	414	310	30	230	14	
60,000				<u>-</u>	240	18	
,							

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was obtained by the weather station on Eniwetok Island.
- 3. Tropopause height was 56,000 ft MSL.

 h. At H-hour the sea level pressure was 1006.4 mb, the temperature 80°F, the dew point 75°F and the relative humidity 85%.

Rise rate: 5000 ft/hr

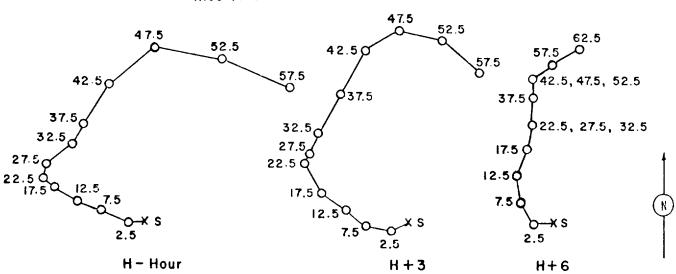


Figure 60. Hodographs for Operation CASTLE -

Nectar.

OPERATION WIGWAM

PDF GMT

DATE: 14 May 1955 14 May 1955

TIME: 1300 2000

TOTAL YIELD: 30 kt

FIREBALL DATA:

Time to 1st minimum: NM Time to 2nd maximum: NM Radius at 2nd maximum: NM Sponsor: DOD

SITE: Pacific Ocean 400 miles
Southwent of San Diego
28° 44' N
126° 16' W
Site elevation: Sea level

HEIGHT OF BURST: 2000 ft underwater depth 16,000 ft

TYPE OF BURST AND PLACEMENT:
Subsurface burst - Device
suspended by cable from barge

SPRAY DOME HEIGHT: 880 ft MSL FIRST PLUME HEIGHT: 1,450 ft MSL

REMARKS:

"The contours given (for H+1.4 hour) were computed on the basis of surface and subsurface water samples and are reproduced here uncorrected. They do not represent fallout activity deposited on the surface. The activity was mixed throughout a surface zone whose depth remained roughly constant for the first two days. This contaminated zone resulted from debris thrown out locally during the surface events or from upwelling of contaminated water from below. The downwind airborne radioactivity varied with the base surge and yielded very little if any residual fallout." At H+19 minutes the contaminated water area was about 5.3 mi2. The area was contaminated in an irregular manner, the peak intensities being approximately three times the average intensity of 25 to 30 r/hr, 3 ft above the surface. The area circumscribed by a 50 mr/hr isointensity contour increased to 7.5 mi² at H+1.4 hr. At H+4.2 hr it had decreased to 3.5 mi2. Measurements of water samples indicated a radicactive decay exponent

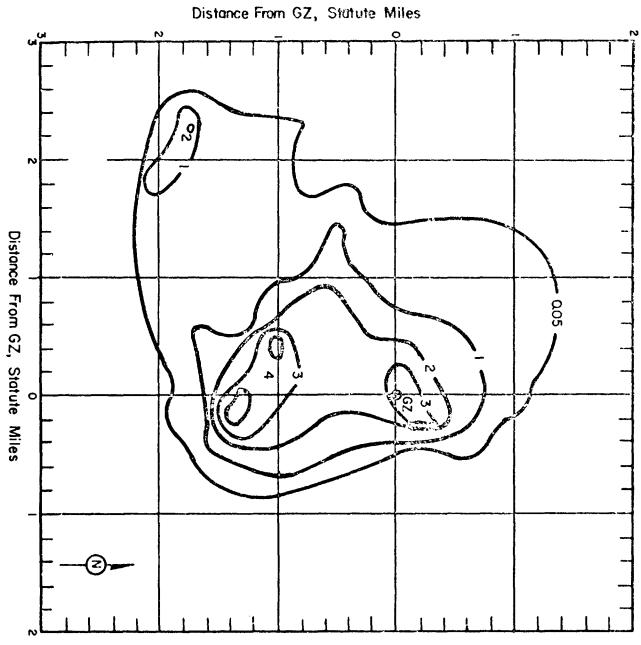


Figure 61. Operation WIGWAM. Off-site dose rate contours in r/hr at H+1.4 hours.

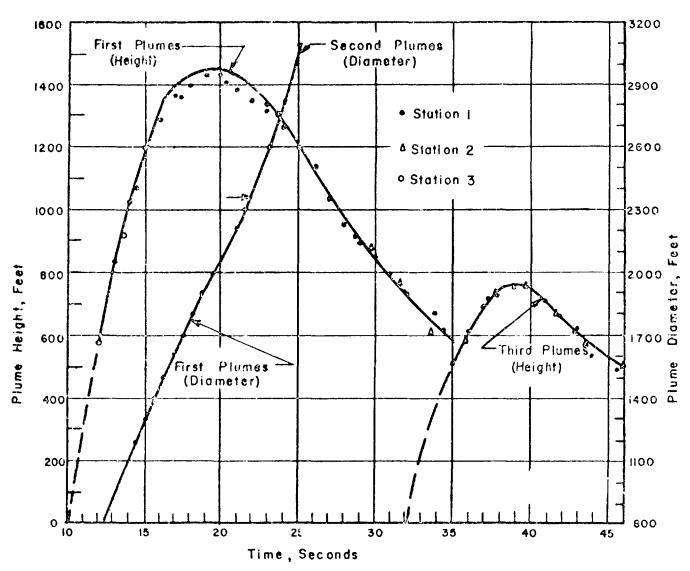


Figure 62. Plume Height Dimensions: Operation WIGWAM.

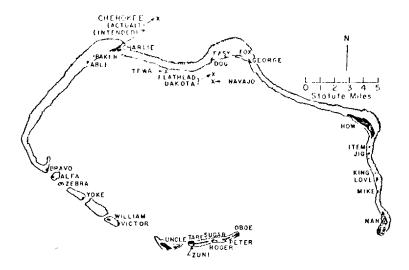


Figure 63. Operation REDWING, Shot Locations, Eniwetok Atoll.

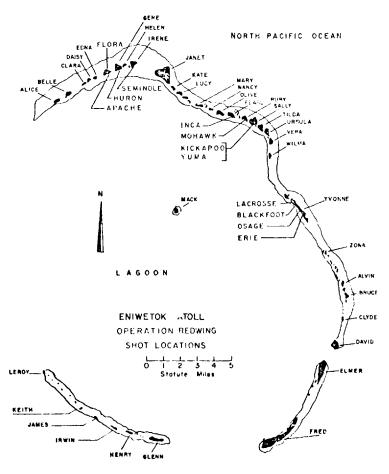


Figure 64. Operation REDWING, Shot Locations, Bikini Atoll.

OPERATION REDWING -

LaCrosse

PPG Time GMT

DATE: 5 May 1956 4 May 1956

TIME: 0625 1.825

TOTAL YIELD: 40 kt

FIREBALL DATA:

Time to 1st minimum: 18 to 34 msec Time to 2nd maximum: 190 to 254 msec Radius at 2nd maximum: 872.5 ft

CRATER DATA:

Diameter: 404 ft Depth: 44 ft Lip: 15 ft Sponsor: LASL

SITE: PPG - Eniwetok - Yvonne
11° 33' 28" N
162° 21' 18" E
Site elevation: Sea Level

HEIGHT OF BURST: 17 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from platform on coral soil

CLOUD TOP HEIGHT:

38,000 ft MSL (Ref 105)

40,000 ft MSL (Ref 112)

CLOUD BOTTOM HEAGHT:

22,000 ft MSL (Ref 105)
13,000 ft MSL (Ref 112)

REMARKS:

The dose-rates shown for the islands of the stoll are based upon ground and aerial surveys made by the Radiological Safety organization and by Project 2.65. The dose-rate readings in the immediate environment of the crater were calculated from survey readings at low tide on D+1 day and D+2 days, after the reef around the crater had been flushed by at least two high tides. The measured field gamma decay exponent

was used to extrapolate the readings to H+l hour. The one reading which gave an H+l hour dose rate of 57,000 r/hr was uniquely high and may have been due to one of the extremely radioactive, partially fused, pieces of metal scattered about near the crater.

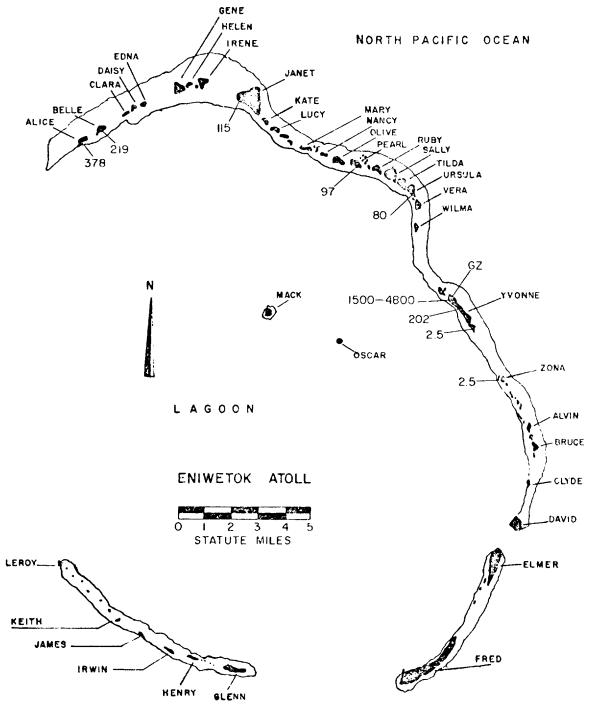


Figure 65. Operation REDWING - Lacrosse. Island dose rates in r/hr at H+1 hour.

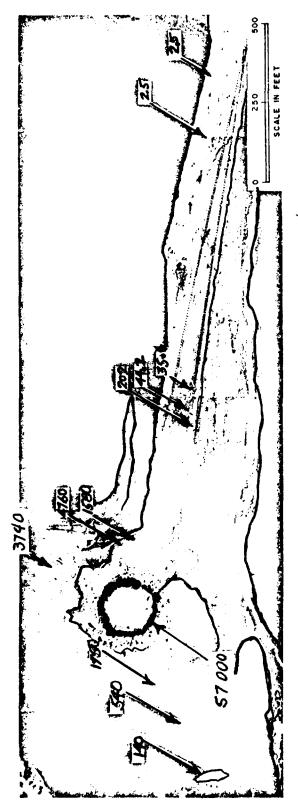


Figure 66. Dose rate readings near the Lacrosse crater in r/hr at H+1 hour.

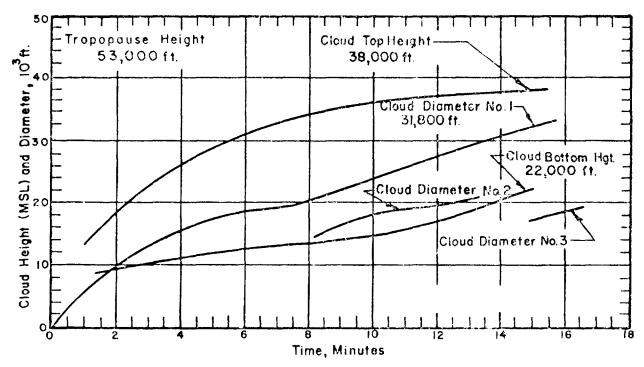


Figure 67. Cloud Dimensions: Operation REDVING - Lacrosse.

Diameter-curve 1 represents the diameter of the main cloud; curve 2 refers to a portion of the cloud which resulted from a shear at 8 minutes; curve 3 represents the average diameter of two clouds which resulted from a shear of the second cloud at 15 minutes.

TABLE 18 ENIWETOK WIND DATA FOR OPERATION REDWING-

LACROSSE

Altitude	H-hou	<u>'}'</u>	11+25 h	ours	11+53 h	ours	11+8 <u>1</u> h	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Di r	Speed
feet	degrees	mph	degrees	mph	degrees	mph	degrees	mph
Surface	070	17	090	15	090	3.14	090	14
1,000	1.00	28	090	23	0 90	18	080	18
2,000	210	28	110	$2l_1$	090	24	090	22
3,000	110	28	110	26	110	29	100	29
4,000	110	29	110	26	110	31	100	31
5,000	110	33	110	29	110	29	100	32
6,000	100	34	110	28	110	33	110	30
7,000	100	32	110	28	110	33	110	26
8,000	090	26	110	31	110	31	110	23
9,000	090	23	100	33	110	31	120	23
10,000	100	23	100	33	110	26	1.20	22
12,000	100	13	100	22	100	17	120	20
14,000	110	06	090	07	050	02	120	09
15,000	(180)	(06)	(020)	(07)	(020)	(02)	(040)	(80)
16,000	250	05	320	07	350	03	320	0'7
18,000	230	05	260	07	270	05	250	05
20,000	240	15	250	17	270	17	210	09
25,000	260	28	260	3i	260	30	260	3 ²
30,000	240	43	250	47	2110	51	250	47
35,000	260	60	260	5 <u>5</u>	260	60	260	69
40,000	260	69	2 50	71.	260	68	260	73
45,000	240	58	250	74	260	71	260	75
50,000	240	70	240	71	250	69	240	64
55,000	280	33	250	44	270	32́	290	36
60,000	1.30	09	150	08	1.80	ŏ6	190	ĭ3
65,000	130	1 5	210	05	170	07	140	07
70,000	080	12	090	06	090	13	080	12
75,000	110	32	090	25	110	38	090	37
80,000	090	48	110	47	110	51	100	149
85,000	100	64	090	64	090	62	090	56
90,000	100	72	110	69	100	71	100	61
94,000	100	65				·		
95,000			100	64	100	57	100	62
98,000							100	63
100,000			100	65	100	63		
102,000					100	63		
105,000	~		100	67				
106,000			100	67				***

Numbers in parentheses are estimated values.
 Tropopause height was 52,300 ft MSL. (Reference 149).

^{3.} Wind data was obtained by the weather station on Eniwetok Island.
4. At the surface the air pressure was 14.62 psi, the temperature 27.2°C, the dew point 25.0°C, and the relative humidity 84%.

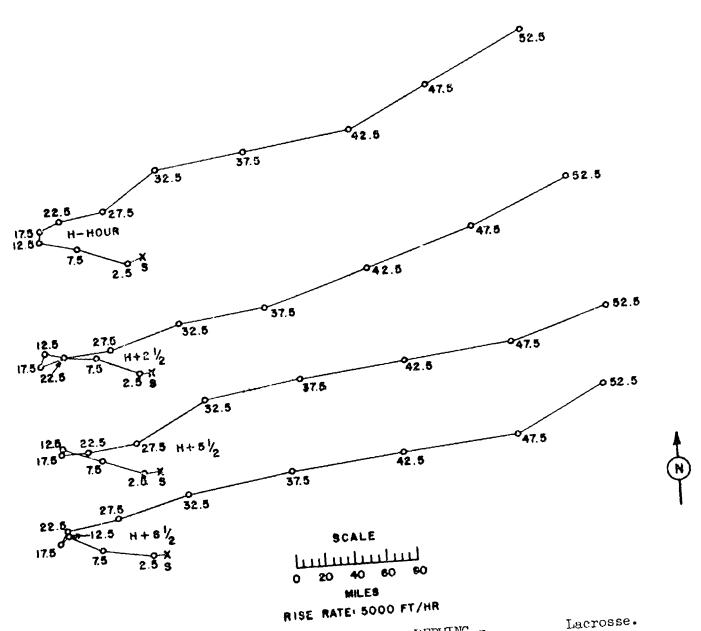


Figure 68. Hodographs for Operation REDWING - Lacross

OPERATION REDWING - Cherokee

 $\mathsf{GM}\Gamma$ PPG time 21 May 1956 20 May 1956 DATE: TIME: 0551 1751

Sponsor: LASL

SITE: PPG - Bikini - 16,000 ft NE of Charlie 11º 40' 06" N 165° 23' 39" E Site clevation: Sea level

HEIGHT OF BURST: 4,350 ± 150 ft

TYPE OF BURST AND PLACEMENT: Air burst over water

CLOUD TOP HEIGHT: 94,000 ft MSL CLOUD BOTTOM HEIGHT: 44,000 ft MSL

REMARKS:

No fallout was observed on the islands. Very light fallout was observed North of GZ. Gamma dose-rate readings on Charlie were at background levels.

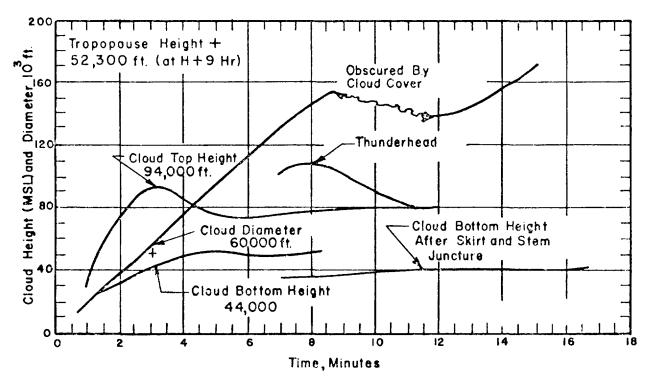


Figure 69. Cloud Dimensions: Operation REDWING - Cherokee.

TABLE 19 BIKINI WIND DATA FOR OPERATION REDWING -

CHEROKEE

Altitude	H-ho	ur	H+3	hours	11+6 h	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
ſeet	degrees	mph	degrees	mph	degrees	mph
Surface	090	06	120	18	120	17
1,000	100	20	090	18	090	22
2,000	090	23	100	18	100	25
3,000	090	23	110	23	100	26
4,000	090	24	110	24	100	26
5,000	090	21	110	22	100	22
6,000	090	16	110	17	090	21
7,000	090	16	1.10	17	090	23
8,000	090	15	100	18	090	22
9 ,0 00	100	13	100	15	090	.17
10,000	120	13	090	18	120	13
12,000	120	14	110	17	120	16
14,000	140	16	1 30	18	110	15
15 , 000	(140)	(16)	(140)	(17)	(130)	(15)
16,000	140	17	150	17	1 50	15
18,000	130	17	160	16	170	23
20,000	140	21	170	15	150	15
25,000	150	10	090	20	160	20
30,000	1.40	07	1 50	14	1 50	10
35,000	260	07	220	12	220	09
40,000	230	17	250	23	230	25
45,000	2140	18	250	37	2 50	38
50,000	250	37	250	39	240	25
55,000	210	Ol	180	07	230	14
60,000	100	20	1.00	12	150	09
65,000	030	23	090	30	090	23
70,000	100	25	090	40	090	31
75,000	090	55	090	45	080	53
78,000					080	60
80,000	090	58	090	53		
85,000	080	63	090	35		
87,000			090	39		
90,000	080	70 05				
95,000	090	85				
100,000	090	93				₩ 🕶

^{1.} Numbers in parentheses are estimated values.

^{2.} Tropopause height was 52,500 ft MSL.

<sup>Wind data was obtained on board the U. S. S. Curtiss.
At H-hour the sea level pressure was 1009.0 mb, the temperature 81°F, the dew point 73°F, and the relative humidity 76%.</sup>

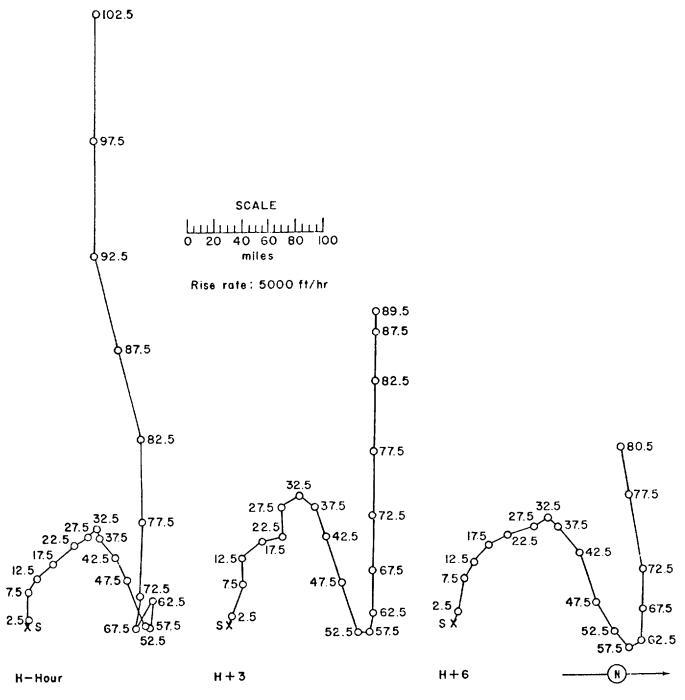


Figure 70 . Hodographs for Operation REDWING - Cherokee.

OPERATION REDWING -

Zuni

PPG Time GMP

DATE: 28 May 1956 27 May 1956

TIME: 0556 1756 SITE: PPG - Bikini - Tare 11° 29' 48" N 165° 221 09"

TOTAL YIELD: 3.5 mt Site elevation: Sea Level

> HEIGHT OF BURST: 9 14

Sponsor: UCRL

FIREBALL DATA:

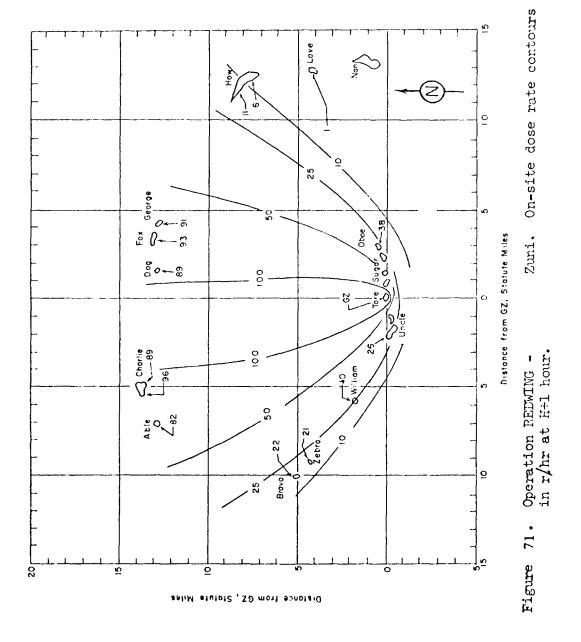
Time to 1st minimum: 160 ± 184 msec Time to 2nd maximum: $1.705 \pm 2.15 \text{ sec}$

Radius at 2nd maximum: 5,248 ft TYPE OF BURST AND PLACEMENT:

Surface burst from platform Diameter: 2,310 ft on coral soil and over water

CRATER DATA:

Depth: 103 ft


Lip: No apparent lip CLOUD TOP HEIGHT: 79,000 ft MSL CLOUD BOTTOM HEIGHT: 49,000 ft MSL

REMARKS:

The on-site fallout pattern was drawn from island readings taken by scientific project 2.65 supplemented by fallout sample collection on rafts and barges in the lagoon. The measured field decay exponent

was used to extrapolate the dose-rate readings to N+1 hour. It was observed that the water adjacent to the beaches of the northern islands of the atoli was generally much more highly contaminated than the islands.

The off-site fallout pattern was drawn from occanographic surveys. The oceanographic surveys used detector probes for measuring the doserate at the surface, plus the allied equipment necessary for measuring the dose-rate at depths to and below the thermocline (water-sampling equipment for the taking of surface samples and for the collection of samples from any desired depth). The dose-rate readings were extrapolated to H+1 hour by using the decay measurements of the samples collected. The portion of fallout that penetrated below the thermoeline is unknown. Rather than attempt to estimate the percentage, the results for the dose rates assume no penetration beyond the depth of mixing.

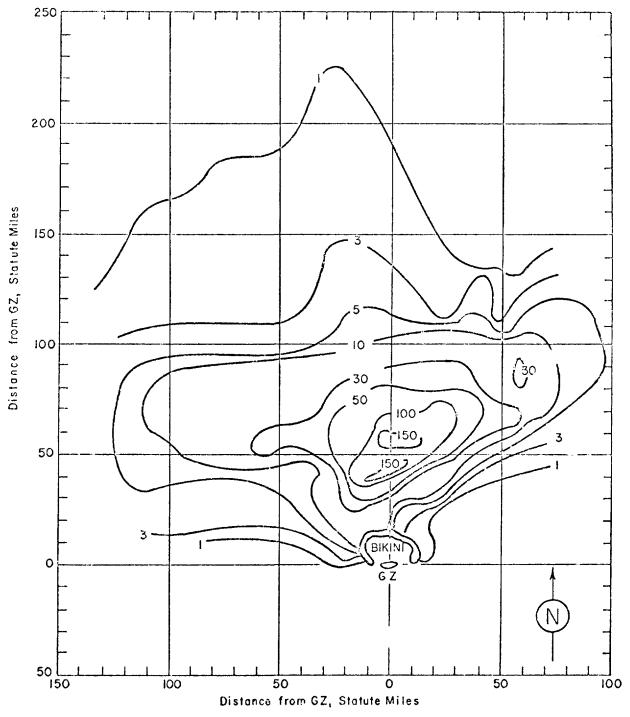


Figure 72. Operation REDWING - Zuni. Off-site dose rate contours in r/hr at H+l hour.

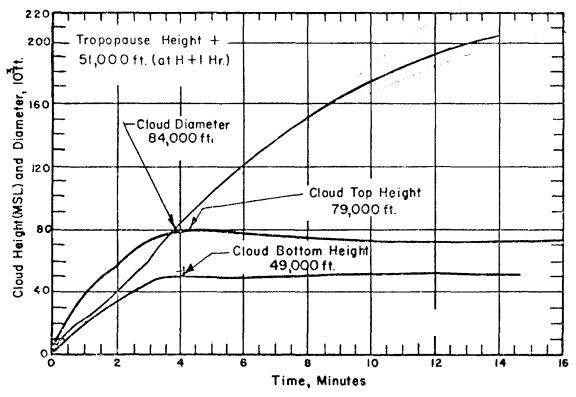
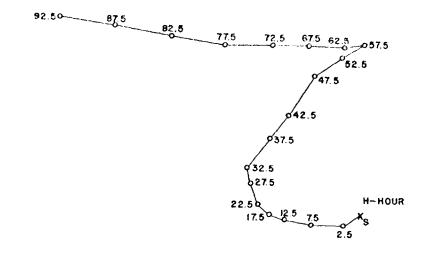
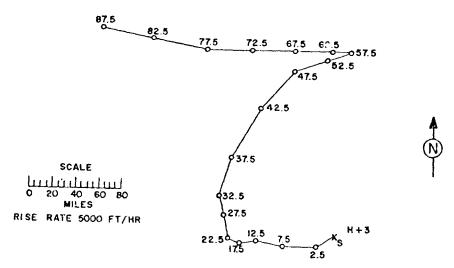


Figure 73. Cloud Dimensions: Operation REDWING - Zuni.

Altitude	II-li h	ours	H-h	H-hour		ours	H+6 hours	
(MSL)	Dir	Speed	Dir	Speed	Dia	Speed	Dir	Speed
feet	degrees	mjela	degrees	mph	degrees	mph	degrees	mph
Surface	070	22	050	22	060	30	090	24
1,000	090	26	080	26	060	26	070	28
2,000	090	5J [‡]	070	25	060	26	080	35
3,000	090	5/1	070	28	070	30	090	31
4,000	090	25	090	28	070	31	100	30
5,000	080	26	090	24	090	29	100	28
6,000	080	23	100	22	090	29	100	30
7,000	090	23	100	22	1.00	23	100	31
8,000	080	5/1	100	22	120	23	090	29
9,000	090	5/1	1.00	22	110	24	100	30
1.0,000	090	51^{+}	100	23	100	22	100	30
12,000	100	22	090	24	090	1.7	090	26
14,000	080	17	090	17	080	16	090	24
15,000			(100)	(15)	(080)	(15)	(090)	(24)
16,000	1.10	15	1.10	12	070	1.14	090	25
18,000	1.1.0	17	100	12	090	13	090	17
20,000	110	<u>J</u> . l ₄	140	12	110	1.0	090	1.7
25,000	170	18	160	18	170	20	260	05
30,000	240	26	170	1.4	1.60	18	180	13
35,000	250	36	220	29	200	35	230	35
40,000	260	34	220	46	21.0	50	260	50
45,000	230	54	210	40	220	43	230	61
50,000	240	37	240	29	250	31	240	32
51,000			250	29				
55,000	220	26	240	3	250	21	540	20
60,000	060	1.8	080	17	090	16	080	22
65,000	090	28	090	30	090	31	090	32
70,000	090	32	090	30	090	37	090	30
75,000	080	1,1,	090	14O	090	38	090	35
77,000							100	41
80,000	100	47	100	48	100	48		
85,000	090	51	100	148	100	46		
86,000					100	43		
90,000	090	52	100	48				

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 51,200 ft MSL.
- 3. Wind data was obtained on board the U.S.S. Curtiss.
- 4. H-hour data for altitudes over 51,000 ft were determined by interpolating from measurements taken between H-4 and H+3 hours.
- 5. At H-hour the sea level pressure was 1010.5 mb, the temperature 81°F, the dew point 76°F, and the relative humidity 80%.


		Pikir	Rongerik			
Altitude	H+9 ho	นวาธ	H+15_h	ours	H+21 h	ดนราธ
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mpli	degrees	mph	degrees	mDp1
Surface	080	5/+	090	23	070	1.5
1,000	090	23	080	2^{l_1}	080	21+
2,000	100	31.	080	23	080	54
3,000	1.00	31	090	20	080	21
4,000	100	28	090	18	080	1.6
5,000	100	29	090	18	080	13
6,000	100	25	090	20	090	12
7,000	100	26	100	21	090	12
8,000	100	31	100	21	090	14
9,000	090	30	090	21	090	14
1.0,000	090	26	100	21	090	12
12,000	100	25	100	22	090	$1)_{\downarrow}$
14,000	080	31	090	21	1.00	1.2
15,000	(080)	(26)	(090)	(18)	(100)	(14)
16,000	`070	22	090	17	090	18
18,000	090	18	100	24	090	24
20,000	070	24	090	23	080	21
25,000	050	25	070	20	060	23
30,000	230	21	200	13	020	26
35,000	230	31	200	13	220	15
40,000	210	46	210	26	230	24
45,000	220	47	2 20	38	230	28
50,000	250	31	230	32	310	25
53,000			2110	31		
55,000	290	16			010	07
60,000	110	23			150	$1^{j_{+}}$
65,000	090	26			090	211
70,000	090	31			080	23
75,000	090	37			090	40
80,000	090	36			080	47
85,000	090	$\widetilde{l}_{+}\widetilde{l}_{+}$			090	52
90,000	090	56			oŝo	56
95,000	100	65			080	69
96,000	100	65				
99,000				₹. =	080	81


- 1. Numbers in parentheses are estimated values.
- Wind data for H+9 hours and H+15 hours were obtained on board the U. S. S. Curtiss. Wind data for H+21 hours was obtained by weather station on Uniwetok Island (Rongerik Atoll).

Altitude	13+27 h	ours	H+33 ho	ours	H+39 h	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
C	0/10	n 0	000	3.0	000	n O
Surface	090	18	090	10	070	18
1,000	080	21.	080	16	070	23
2,000	080	22	070	17	070	25
3,000	080	21	070	1.6	070	29
4,000	080	18	080	13	070	22
5,000	080	16	1.00	09	070	12:
6,000	070	14	090	06	080	07
7,000	080	13	080	06	080	07
8,000	090	13	090	08	070	Oγ
9,000	090	13	090	1.0	080	Oγ
10,000	090	13	080	13	080	10
12,000	080	12	060	13	090	12
14,000	110	08	060	13	060	J.14
15,000	(090)	(13)	(080)	(12)	(060)	(15.)
16,000	070	17	`090	10	060	17
18,000	090	17	090	12	01+0	16
20,000	070	15	oŝo	07	030	18
25,000	060	22	080	22	090	14
30,000	050	24	070	22	050	13
35,000	330	08	330	17	31.0	-9 18
40,000	190	1.0	200	16	180	21
45,000	230	10	190	06	290	09
50,000	230	14	320	17	270	80
55,000	180	14	200	09	220	17
60,000	110	16	360	05	080	1.7
65,000	090	22	100	15	090	23
70,000	080	29	0,40	08	080	26
75,000	100	38	1.00	32	080	38
80,000	090	36	090	41	080	147
85,000	090	55	090	56	100	57
90,000	090	60	090	61	090	67
92,000					080	75
95,000	090	74	090	69		17
100,000	090	81	090	81		
105,000	090	04	080	89		
110,000	090	69	080	102		
114,000	090	69	080	102		
#.#. #.	090	09	000	J.UZ		

^{1.} Numbers in parentheses are estimated values.

^{2.} Wind data was obtained by the weather station on Eniwetok Island (Rongerik Atell).

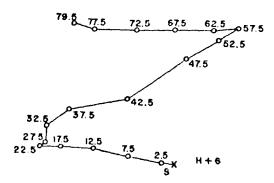
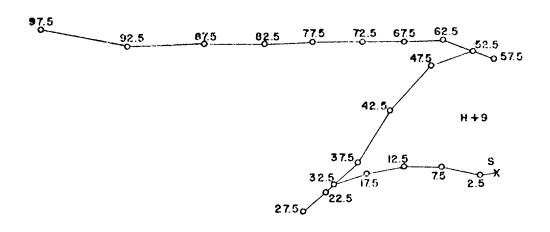
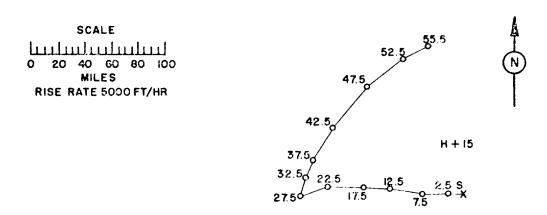




Figure 74. Hodographs for Operation REDWING -

Zuni.

Zuni.



Figure 75. Hodographs for Operation REDWING -

OPERATION REDWING:

- Yuma

DATE: PPG time GMT 28 May 1996 27 May 1996

TIME: 0756 1956

Sponsor: UCRL

SITE: PPG - Eniwetok - Sally

11° 30' 33" N 162° 18' 55" E

Site elevation: Sea Level

HEIGHT OF BURST: - 205 ft

CLOUD TOP HEIGHT: 8,000 ft MSL CLOUD BOTTOM HEIGHT: 1,000 ft MSL

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

REMARKS:

Only island dose rate readings are available. These were taken from the aerial and ground surveys made by the Radiological Safety organization. The $t^{-1.2}$ decay approximation was used to extrapolate the dose rate readings to H+l hour. Significant amounts of alpha (plutonium) contamination were found on the shot island.

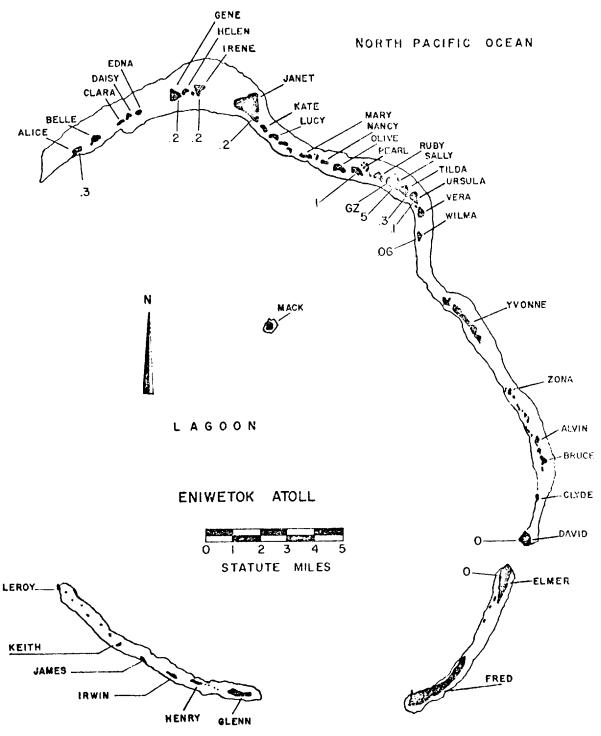


Figure 76. Operation REDWING - Yuma.

Island dose rates in r/hr at H+1 hour.

TABLE 21 ENLWETOK WIND DATA FOR OPERAGEON REDWENG -

Altitude	II-2 h		II li			ours		onn.a
MSL)	Dir	Speed	Dir	Spend	Di r	Speed	Dia .	Speed
feet	degrees		degrees	mph	degrees		degrees	mph
Surface	080	21	080	21.	090	1.7	090	$\mathrm{T}^{l_{4}}$
1,000	080	5/+	090	33	090	26	090	26
2,000	080	31	090	33	3.00	33	090	30
3,000	080	35	090	35	100	38	100	33
4,000	080	35	090	36	1.00	45	100	36
5,000	080	32	090	33	100	36	1.10	30
6,000	090	28	080	33	100	35	120	28
7,000	090	28	080	36	090	30	110	30
8,000	090	29	080	38	090	37	110	35
9,000	090	3 0	080	37	090	39	110	36
10,000	090	30	080	31	090	43	120	35
12,000	090	25	080	2/4	090	14O	1.00	32
14,000	110	23	090	15	090	7.14	090	28
16,000	1110	22	140	16	11.0	16	100	$\mathcal{I}_{I^{\dagger}}$
18,000	1110	17	150	14	120	18	120	15
20,000	180	05	100	12	100	J.7 1	1.00	12
25,000	170	26	160	21	180	12	270	08
30,000	260	21	190	55	160	21	220	23
35,000	230	35	220	35	190	41	220	47
40,000	220	55	510	$l_1 l_1$	200	55	200	52
45,000			230	51	240	35	230	140
50,000			270	45	250	35	230	24
55,000			510	29	5/10	38	5/10	28
60,000			060	14	060	10	1.00	15
65,000			080	37	100	39	100	32
70,000			110	38	100	38	100	31
75,000			090	37	100	1+()	090	37
80,000			100	47	100	39	100	45
85,000			090	47	090	53	100	54
90,000			110	60	100	55	100	60
95,000			1.00	68	090	67	100	71
93,000				0 -	100	85		
100,000			100	89			100	68
102,000			100	92				

- 1. Tropopause height was 55,500 ft MSL.
- 2. Wind data was obtained by the weather station on Eniwetok Island.
- 3. H hour values were interpolated from data taken at H-2 hours and H+1 hour.
- 4. At the surface the air pressure was 14.64 psi, the temperature 27.5°C, the dew point 23.9°C and the relative humidity 80%.

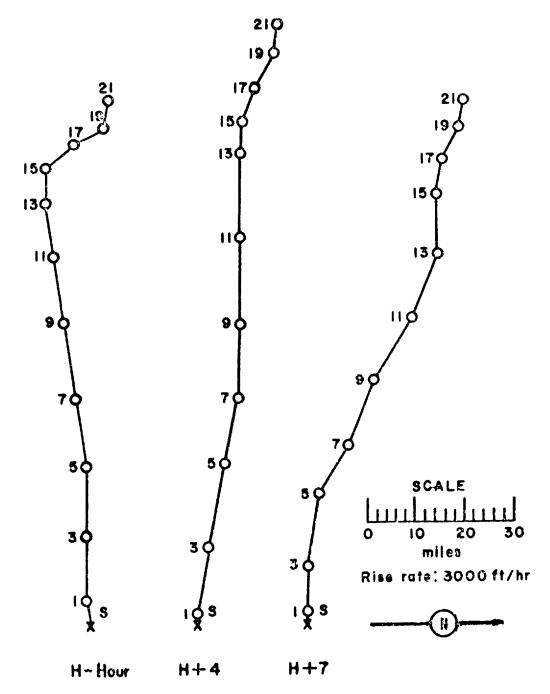


Figure 77. Hodographs for Operation REDWING -

Yuma.

OPERATION REDWING -

Erie

PIG Time GMT

DATE: 31 May 1956 30 May 1956

TIME: 0615 1815

Sponsor: LASL

SITE: PPG - Eniwetok - Yvonne
11° 32' 40" N
162° 21' 52" E
Site elevation: Sea level

HEIGHT OF BURST: 300 ft

TOWER OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 32,000 ft MSL CLOUD BOTTOM HEIGHT: 10,000 ft MSL

REMARKS:

Only island dose-rate readings are available. These were obtained from aerial and ground surveys made by the Radiological Safety organization at H+ 1 hours. The t- $^{1\cdot2}$ decay approximation was used to extrapolate the dose-rate readings to H+l hour. Islands north of Yvonne in the atoll were only slightly contaminated.

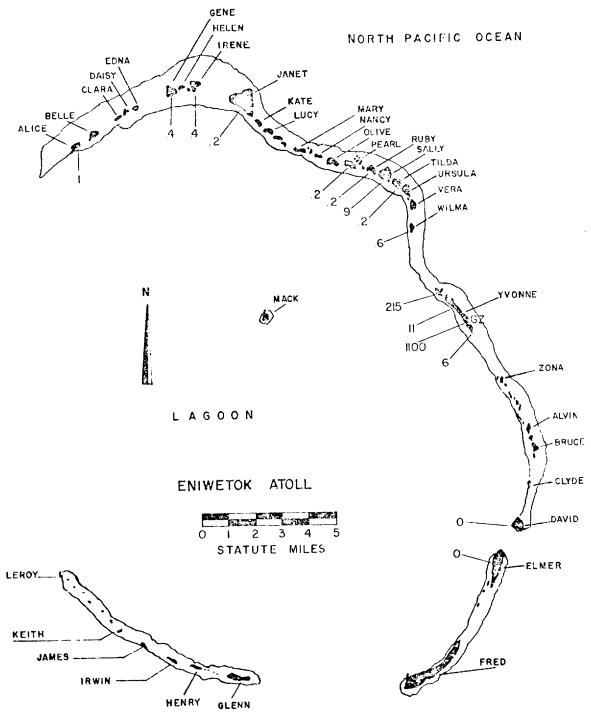


Figure 78. Operation REDWING - Erie.
Island dose rates in r/hr at H+1 hour.

Altitude	H-ho	1137	II+3 ho	uzg	H+6 ho	urs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	100	16	130	16	090	12
1,000	100	28	100	50	090	23
2,000	100	28	100	21	090	23
3,000	100	23	100	22	090	22
4,000	100	21	3.00	22	090	20
5,000	090	20	100	18	090	16
6,000	090	16	100	1.2	3.00	17
7,000	080	10	110	07	100	1.6
8,000	100	08	110	06	100	16
9,000	100	17	090	07	110	16
10,000	080	05	090	08	120	$\mathcal{I}_{f^{\dagger}}$
12,000	100	06	100	06	120	05
14,000	090	09	090	07	120	09
15,000	(080)	(10)	(090)	(09)	(100)	(07)
16,000	080	10	090	13	080	06
18,000	070	14	090	13	080	12
20,000	360	07	1.10	Ογ	080	07
25,000	260	15	200	20	280	09
30,000	250	22	250	5/1	230	17
35,000	240	1,14	270	28	240	30
40,000	280	37	270	41	280	38
45,000	280	36	270	140	260	3 8
50,000	260	38	250	41	2 ¹ 10	39
55,000	320	18	300	12	270	$5l^{\dagger}$
60,000	080	12	090	1.3	140	07
65,000	090	26	080	24	080	24
70,000	100	33	110	32	110	32
75,000	100	140	100	44	100	44
80,000	100	72	090	68	120	62
85,000	090	79	090	98	120	72
90,000	090	74	110	83.	100	78
94,000	090	77				
95,000			100	77	100	80
96,000			1.00	78		
1.00,000					120	88
102,000		***			120	93

- Numbers in parentheses are estimated values.
 Tropopause height was 54,100 ft MSL. (Reference 149).
- 3. Wind data was obtained by the weather station on Eniwetok Island.
- 4. At H-hour the sea level pressure was 1009.1 mb, the temperature 80.3°F, the dew point 73.5°F, and the relative humidity 80.2%.

Rise rate: 5000 ft/hr

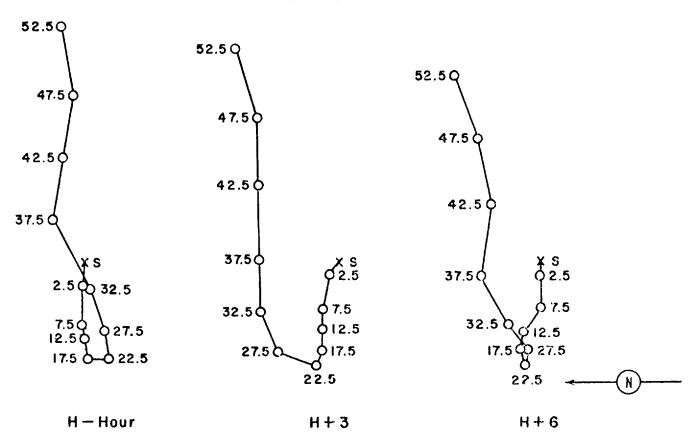


Figure 79. Hodographs for Operation REDWING - Erie.

OPERATION REDWING - - Seminole

PFG time GM'l' 6 June 1956 6 June 1956 DATE: TIME: 1.255 0055

Sponsor: IASL

SITE: PPG - Eniwetok - Irene 11° 40' 35" N 162° 13' 02" E

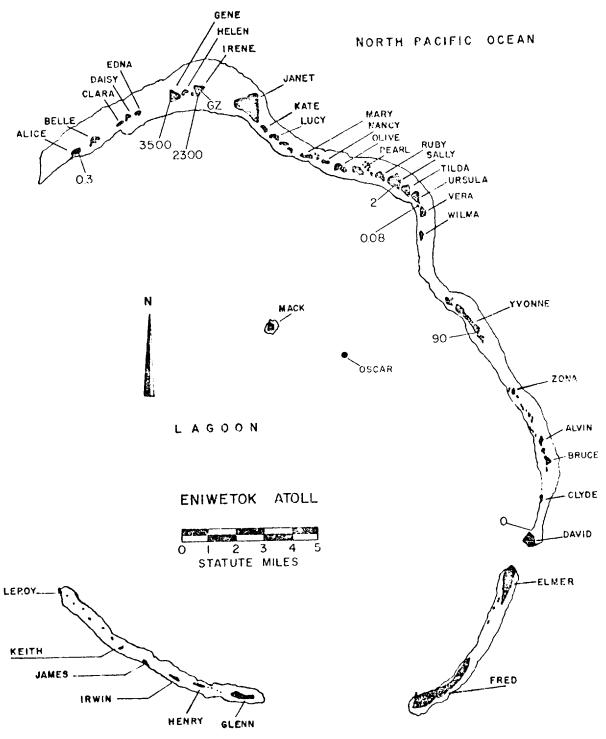
HEIGHT OF BURST: 4.5 ft

TYPE OF BURST AND PLACEMENT: Surface burst in water tank over coral soil

CLOUD TOP HEIGHT: 16,000 ft MSL CLOUD BOTTOM HEIGHT: 9,000 ft MSL

REMARKS:

Only island dose-rate readings are available. These were obtained from aerial and ground surveys made by the Radiological Safety organization. The t-1.2 decay approximation was used to extrapolate the dose-rate readings to H+1 hour.



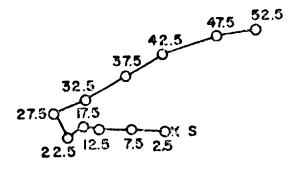
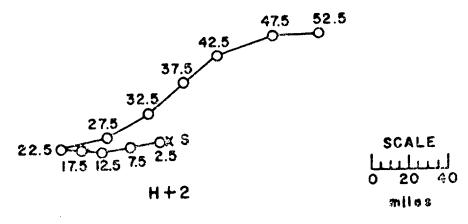

Figure 80. Operation REDWING - Seminole. Island dose rates in r/hr at H+l hour.

TABLE 23 ENIMEROK WIND DATA FOR OPERATION REDWING-


SEMINOLE

Altitude	H-1 hour		ll-hou	ll-hour		IHZ hours		hour
(MSI)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph	degrees	nfolm
Surface	100	1.3	100	1.2	090	09	080	12
1,000	090	16	090	15	080	<u> </u>	070	20
2,000	090	16	090	17	090	20	070	20
3,000	090	18	090	18	090	17	100	20
4,000	090	18	090	17	080	3 ¼	100	20
5,000	090	18	090	17	080	ièi	090	17
6,000	100	15	090	1.5	080	34	080	16
7,000	100	10	100	12	1.00	14	080	09
8,000	100	10	110	12	120	114	100	08
9,000	090	13	090	13	100	J 14	110	08
10,000	090	14	090	14	080	14	090	08
12,000	090	12	080	10	070	80	1.00	07
14,000	090	05	090	06	100	09	140	02
15,000			(100)	(06)	(100)	(09)	(Calm)	(Calm)
16,000	100	05	1.00	06	100	09	Calm	Calm
18,000	110	02	110	03	3.10	05	Calm	Calm
20,000	040	08	060	09	090	10	160	07
25,000	030	09	110	13	260	21	240	05
30,000	250	14	250	17	240	23	240	$1^{j_{+}}$
35,000	250	23	240	23	230	23	220	1.7
40,000	240	20	5/10	20	230	57	230	16
45,000	250	27	250	30	260	23	250	25
50,000	260	18	260	20	270	21	270	13
55,000	360	05	340	05	300	05	290	09
60,000	090	13	080	12	060	10	120	05
65,000	090	26	100	26	110	28	i10	23
70,000	070	45	080	47	090	49	090	52
75,000	090	60	090	60	100	61.	100	56
80,000	090	63	090	63	090	76	100	64
85,000	100	75	1.00	76	090	79	100	74
90,000	100	77	100	79	090	84	090	71
93,000					090	84	090	71
95,000	100	81	100	80				
100,000	100	68	1.00	68				

- 1. Numbers in parentheses are estimated values.
- Tropopause height was 52,200 ft MSL. (Reference 149).
- 3. Wind data was obtained by the weather station on Eniwetok Island.
 4. H-hour values were interpolated from auto to the station of the stati H-hour values were interpolated from data taken at H-1 hour and
- At the surface the air pressure was 14.64 psi, the temperature 30.5°C, the dew point 24.7°C and the relative humidity 71%.

H-Hour

Risa rate: 5000 ft/hr

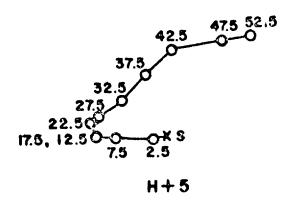


Figure 81. Hodographs for Operation REDWING -

Seminole.

OPERATION REDWING -

Flathead

 INTE:
 INTERIOR
 GMT

 DATE:
 12 Jun 1950
 11 Jun 1956

 TIME:
 0626
 1826

Sponsor: LASL

SITE: PPG - Bikini - 5,000 ft south

of Dog
11° 36' 00" N
165° 27' 05" E
Site elevation: Sea Level

HEIGHT OF BURST: 15 #1

TYPE OF BURST AND PLACEMENT:

Surface burst from barge on water; center of gravity approx. 15 ft above surface of water; water depth 114 ft

CLOUD TOP HEIGHT: 65,700 ft MSL CLOUD BOTTOM HEIGHT: 38,600 ft MSL

REMARKS:

The on-site fallout pattern was drawn from island readings taken by scientific projects supplemented by fallout sample collection on rafts and barges in the lagoon. Actual field decay measurements, which indicated a decay exponent were used to extrapolate the dose-rate readings to H+1 hour.

The eff-site fallout pattern was drawn from oceanographic surveys. The oceanographic surveys used detector probes for measuring the doserate at depths to and below the thermocline. Water-sampling equipment was used for the taking of surface samples and for the collection of samples from any desired depth. The dose-rate readings were extrapolated to H+1 hour by using the decay measurements of the samples collected. Very little of the fallout should have been associated with solid particles large enough to penetrate below the thermocline.

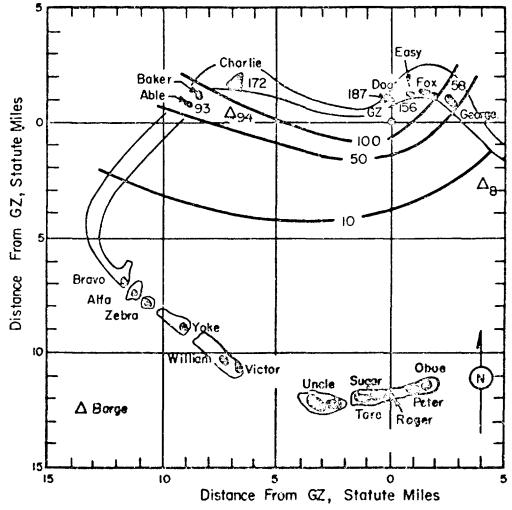


Figure 82. Operation REDWING - Flathead. On-site dose rate contours in r/hr at H+l hour.

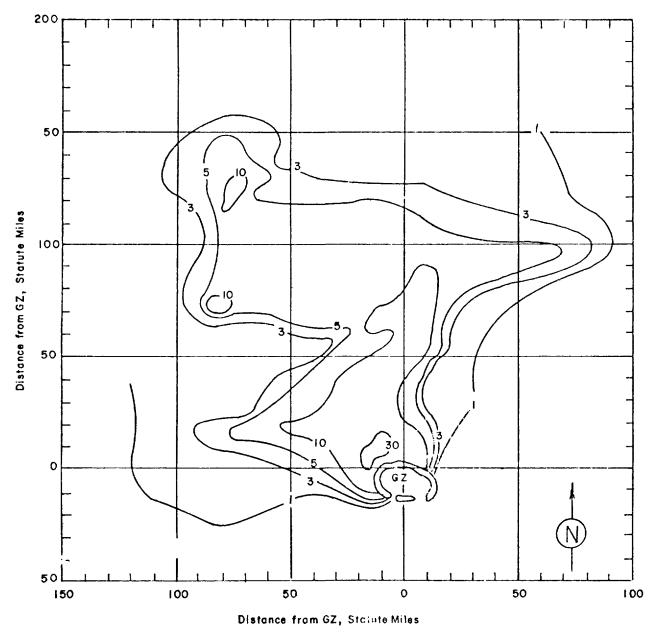


Figure 83. Operation REDWING - Flathead.
Off-site dose rate contours in r/hr at H+l hour.

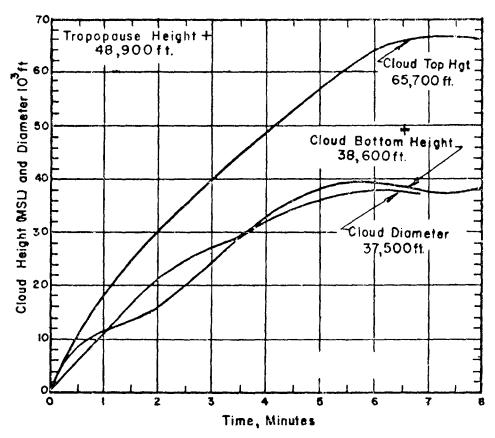
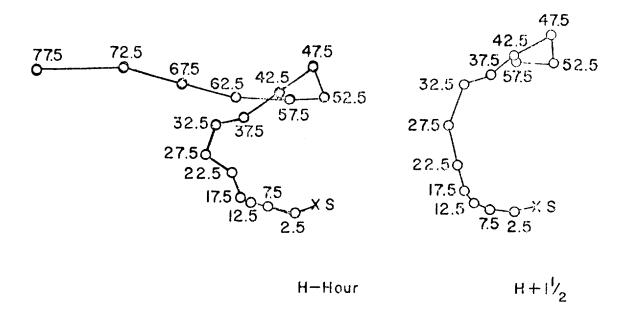


Figure 84. Cloud Dimensions: Operation REDWING - Flathead.

TABLE 24 BIKINI WIND TATA FOR OPERATION REDWING - FLATHFAD

Altitude	11-2) h	າດເນາຣ	H-hor	13,	li+l ₂ ho	วนาร	H43 <u>5</u> ho	ours	H+57, ho	ours
(MSh)	Dir	Speed	Dir	Speed	Dia	Speed	Dir	Spaed	Dir	Speed
feet	degrees	ugih	degrees	mph	degrees	udin	degre e s	mph	degrees	mbp
Surface	080	18	080	22	080	5/1	060	21	050	15
1,000	060	17	0,10	21	070	23	060	20	050	22
2,000	070	114	080	17	080	20	070	50	050	21
3,000	080	14	090	15	090	15	070	18	060	24
4,000	080	16	090	14	100	13	070	2.8	070	15
5,000	090	17	100	15	100	13	070	18	080	16
6,000	090	15	100	14	100	14	0 79	16	080	15
7,000	090	1,4	090	14	090	14	060	09	090	1.4
8,000	080	12	090	10	090	10	060	08	090	09
9,000	080	10	090	09	100	08	090	07	060	06
10,000	090	09	100	80	100	07	050	06	050	05
12,000	090	80	090	07	090	05	090	08	100	06
14,000	110	03	120	05	130	06	\mathtt{Calm}	Calm		Calm
16,000	020	02	110	06	160	08	080	03	170	05
18,000	110	06	130	10	150	14	100	06	070	Ojt
20,000	160	09	160	12	160	13	150	07	180	07
25,000	050	14	120	17	170	20	170	14	180	12
30,000	210	12	200	17	200	21	200	15	200	16
35,000	240	14	250	14	250	14	250	15	260	21
40,000	260	22	240	21	230	21	240	22	270	21
45,000	220	22	230	21	5,1+0	20	270	18	310	18
50,000	300	15	340	15	360	1 5	330	14	030	15
55,000	070	14	090	17	100	2 0	070	21	100	20
60,000	090	28	090	28			1.00	23	090	16
65,000	100	28	100	28			080	24	080	25
70,000	100	33	100	33			090	40	080	37
75,000	090	46	090	146		-~	080	46	080	57
80,000							0 80	63	090	64
85,000							090	64	080	68
90,000		~-					090	54	080	59
91,000									080	69
93,000							090	56		


^{1.} Tropopause height was 48,900 ft MSL at H-hour.

Wind data was obtained on board the U. S. S. Curtiss.
 H-hour values were interpolated from data taken at H-2 hours and $H+l_2^1$ hours.

At H-hour the sea level pressure was 1012.9 mb, the temperature 82.0°F, the dew point 76.0°F and the relative humidity 82.0%.

Rise rate; 5000 ft/hr

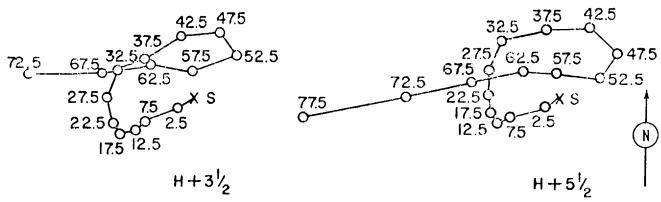


Figure 85. Hodographs for Operation REDWING -

Flathead.

OPERATION REDWING -

Blackfoot

 DATE:
 PPG Time
 GMT

 12 June 1956
 11 June 1956

 TIME:
 0626
 1826

Sponsor: IASL

SITE: PPG - Eniwetok - Yvonne
11° 33' 04" N
162° 21' 31" E
Site elevation: Sea level

HEIGHT OF BUILT: 200 ft

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 25,000 ft MSL CLOUD BOTTOM HEIGHT: 14,000 ft MSL

REMARKS:

Only island dose-rate readings are available. These were obtained from aerial and ground surveys made by the Radiological Safety organization. The t^{-1,2} decay approximation was used to extrapolate the dose-rate readings to H+1 hour. Heavy contamination from this shot, fired on central Yvonne, was limited primarily to the shot island. However, the photo tower on Mack was highly contaminated from the fallout.

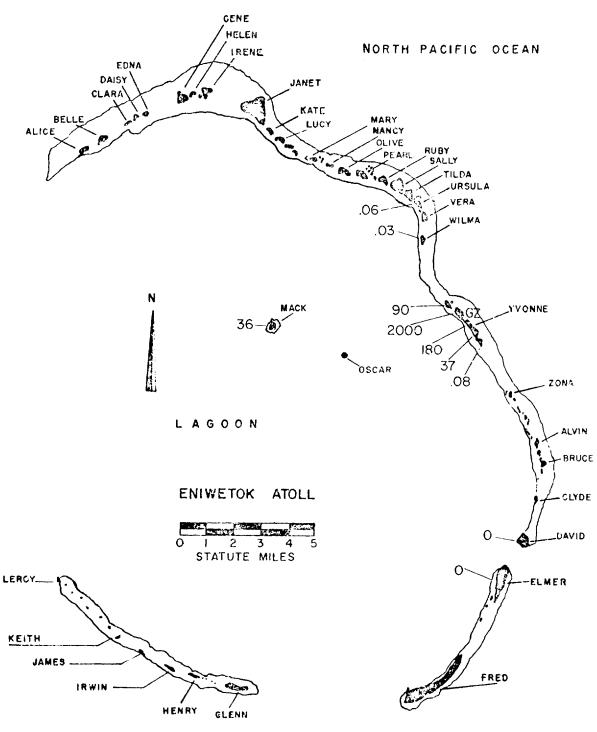
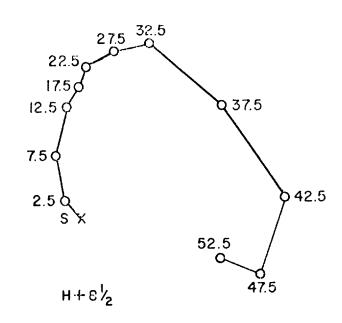


Figure 86. Operation REDWING - Blackfoot. Island dose rates in r/hr at H+l hour.

TABLE 25 ENIMETOR WIND DATA FOR OPERATION REDWING


Altitude	H-1 h	39131 	IH25 ho	מינטכ	1145 <u>)</u> ho	ours	И+8}-)	noung
(MSL)	Dix	Speed	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph	degrees	mph
0 0	0.00	- 1	200	2.1	330	3.5	050	n 1.
Surface	090	11,	130	14	110	15	050	114
1,000	090	j 14	070	08	080	1.8	080	18
2,000	090	15	080	16	080	16	070	17
3,000	100	5/+	090	15	090	16	080	J1,t
4,000	1.00	1.8	100	15	090	16	080	1.2
5,000	100	15	3.00	14	090	13	080	13
6,000	100	1.3	090	15	1.00	12	080	12
7,000	100	1.2	090	$\mathfrak{I}^{l_{\mathfrak{l}}}$	1.00	12	080	12
8,000	100	1.2	090	13	100	13	100	13
9,000	090	09	090	1.2	100	13	100	13
10,000	070	09	090	07	090	10	100	14
12,000	080	09	090	07	100	09	100	80
14,000	090	08	110	10	100	09	100	09
15,000	(090)	(09)	(100)	(10)	(100)	(80)	(120)	(06)
16,000	090	09	090	12	110	07	110	07
18,000	070	16	080	09	090	12	120	06
20,000	070	09	070	09	090	12	100	13
25,000	090	10	1.20	21	1.80	12	150	09
30,000	050	08	080	07	140	1.2	170	10
35,000	280	$\mathfrak{I}\mathfrak{j}^{\dagger}$	2140	32	230	26	220	28
40,000	240	35	240	28	240	23	230	23
45,000	240	23	250	17	030	09	290	23
50,000	310	22	010	13	090	16	020	12
52,000								
53,000			030	20			020	23
55,000	090	20			100	18		
60,000	120	26			100	20		
65,000	060	17			080	17		
70,000	090	36			090	50	w ·	
71,000	090	36						
75,000	- -				090	59		
80,000					090	59		
82,000					090	61		
•					*			

^{1.} Numbers in parentheses are estimated values.

^{2.} Tropopause height was 52,500 ft MSL.

^{3.} Wind data was obtained by the weather station on Eniwetok Island.

^{4.} At H-hour the sea level pressure was 1012.5 mb, the temperature 81.1°F, the dew point 75.8°F and the relative humidity 84.0%.

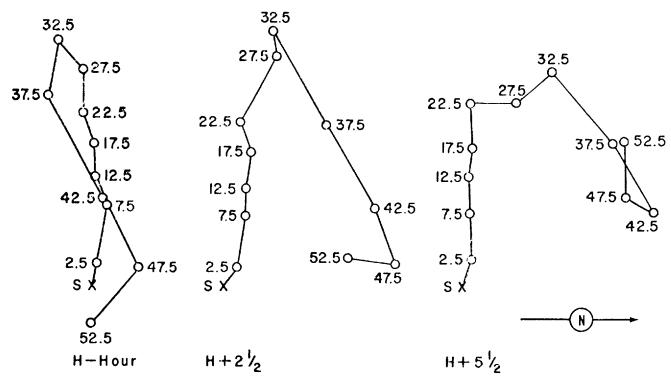


Figure 87. Hodographs for Operation REDWING

- Blackfoot.

DATE:

Kickapoo

PPG Time GMP

14 June 1956 13 June 1956 TIME: 1126 2326

> SITE: PPG - Eniwetck - Sally 11° 30' 38" N

162° 19' 11" E Site elevation: Sea Level

HEIGHT OF BURST: 300 ft

Sponsor: UCRL

TYPE OF BURST AND PLACEMENT: Tower burst over coral soil

CLOUD TOP HEIGHT: 16,000 ft MSL CLOUD BOTTOM HEIGHT: 11,000 ft MSL

REMARKS: Only island dose-rate readings are available. These were obtained from aerial and ground surveys made by the Radiological Safety Organization. The t^{1.2} decay approximation was used to extrapolate the dose-rate readings to H+l hour. Heavy contamination was encountered only on Sally, the shot island. Significant alpha (plutonium) contamination was also found on the shot island.

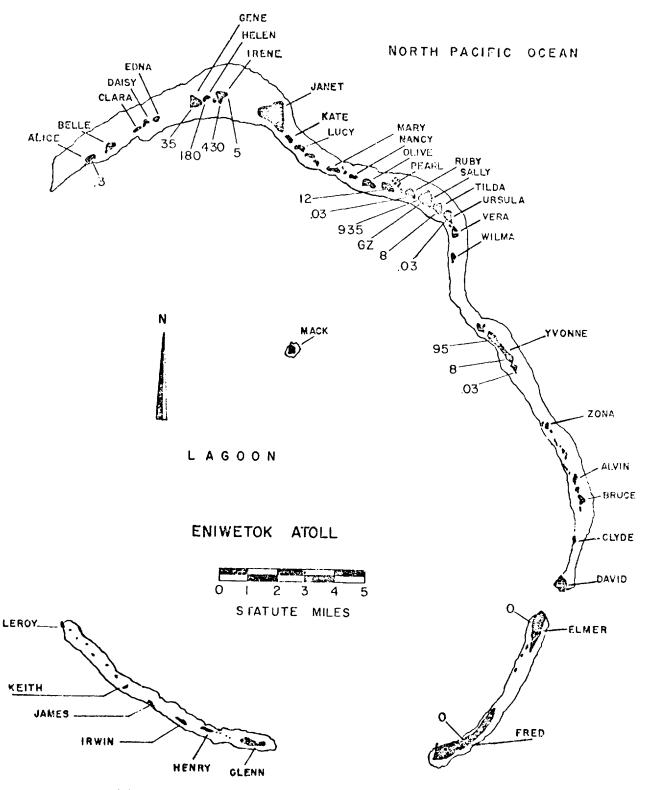


Figure 88. Operation REDWING - Island dose rates in r/hr at H+l hour.

Kickapoo.

TABLE 26 ENIMETOK WIND DATA FOR OPERATION REDWING

Altitud	e IJ-}	lour	11+3=	nours	Ji+9 ¹ 5	hours
(MSL)	$\overline{\mathrm{Dir}}$	Speed	Dir Dir	Speed	Dir	Speed
feet	degree	es mph	degrees	mph	degrees	
0	6.00	10	050	3.0	000	10
Surface	080	12	050	12	080	12
1,000	090	12	090	12	090	14
2,000	090	14	090	14	090	14
3,000	090	17	090	17	1.00	1) [†]
4,000	090	16	100	15	090	13
5,000	100	14	100	13	090	10
6,000	120	12	120	12	070	80
7,000	100	07	120	12	080	07
8,000	080	06	100	12	080	07
9,000	060	09	100	12	070	80
10,000	030	10	070	03	060	09
12,000	030	13	040	-05	060	05
14,000	030	10	020	07	050	05
15,000	(030)	(80)	(020)	(09)	(050)	(06)
16,000	020	06	020	13	040	07
18,000	020	12	020	09	040	12
20,000	070	12	050	07	020	14
25,000	030	10	040	15	030	23
30,000	360	09	350	17	010	15
35,000	350	12	350	18	040	15
40,000	360	20	020	18	030	15
45,000	350	22	020	24	340	23
50,000	340	24	250	26	350	29
55,000	060	26	050	32	060	30
60,000	080	24	090	16	070	2 5
65,000	J.00	31	110	37	100	39
70,000	090	46	090	51	090	51
75,000	090	77	100	61	100	56
80,000	100	74	100	69	090	65
81,000					090	65
85,000	100	71	090	79		
90,000	090	83	090	80		
95,000	100	90	090	86		
98,000	100	90				
100,000			090	68		
102,000			090	68		-

- 1. Numbers in parentheses are estimated values.

- Tropopause height was 53,100 ft MSL.
 Wind data was obtained by weather station on Eniwetok Island.
 At the surface the air pressure was 14.65 psi, the temperature 29.6°C, the relative humidity 71%.

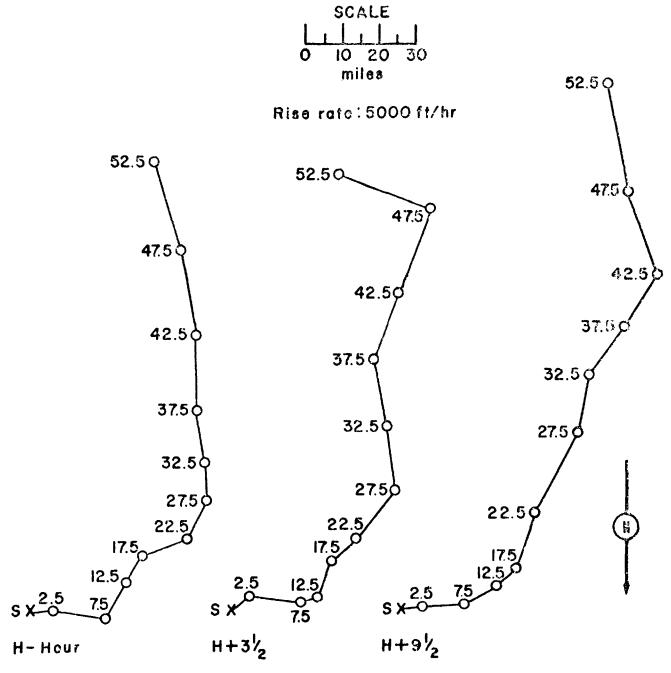


Figure 89. Hodographs for Operation REDWING -

Kickapoo

OPERATION REDWING - Ocage

 PPG Time
 GMT

 DATE:
 16 Jun 1956

TIME: 1314 0114 Sponsor: LASL

SITE: PFG - Eniwetok - Yvonne 11° 32' 48" N 162° 21' 39" E

Site elevation: Sea Level

HEIGHT OF BURST: 670 ± 35 ft

TYPE OF BURST AND PLACEMENT: Air burst over coral soil

CLOUD TOP HEIGHT: 21,000 ft MSL CLOUD BOTTOM HEIGHT: 17,000 ft MSL

REMARKS: No significant contamination was observed.

Altitude	11-3 ho	ur.5	H-hour	7	11+7211	อนทอ	114107	hours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	n(D)1	degrees	mpli
Surface	150	٦¼	150	14	160	1.6	180	15
1,000	130	16	130	16			160	1.2
2,000	130	18	140	17			190	12
3,000	130	18	140	17		~-	190	12
4,000	140	18	150	17			190	09
5,000	150	17	150	16		~-	190	1.0
6,000	160	16	160	16			190	13
7,000	1.70	14	170	$I^{J_{I}}$			1.90	13
8,000	1.80	09	180	09			190	10
9,000	180	09	180	09			190	05
10,000	170	12	170	10			170	07
12,000	220	13	220	12			180	07
14,000	230	1.4	230	14			OLS	09
15,000			(220)	$(1^{l_{+}})$				
16,000	210	15	210	13		~-	200	07
18,000	200	12	200	12		~	200	07
20,000	200	07	200	07			180	05
25,000	230	05	230	05			1.80	02
30,000	020	05	030	05	080	06	1.80	03
35,000	030	15	040	15	090	714	360	05
40,000	050	26	050	25	040	18	010	1.2
45,000	160	07	150	09	050	30	~	
50,000	110	14	120	14	230	12	~	
55,000	140	07	140	07	120	07	~	
60,000	140	07	1.30	12	090	P.C		

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 51,500 ft MSL.
- 3. Wind data was obtained by the weather station on Eniwetok Island.
- H-hour values above 30,000 ft were interpolated from data taken at $H-2\frac{1}{2}$ hours and $H+1\frac{1}{2}$ hours.
- 5. At the surface the air pressure was 14.63 psi, the temperature 29.9°C, and the relative humidity 74%.

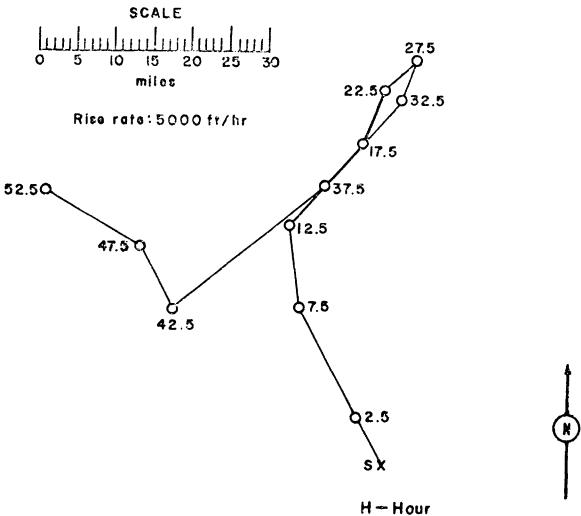


Figure 90. Hodograph for Operation REDWING -

Osage

Inca

PPG Time GMT

DATE: 22 June 1956 21 June 1956 TIME: 0956 2156 Sponsor: UCRL

SITE: PFG - Eniwetok - Fearl

11° 37' 53" N 162° 17' 50" E Site elevation: Sca Level

HEIGHT OF BURST: 200 ft

TYPE OF BURST AND PLACEMENT:

Tower burst over coral soil

CLOUD TOP HEIGHT: 42,000 ft MSL CLOUD BOITOM HEIGHT: 30,000 ft MSL

REMARKS: Only island dose-rate readings are available. These were obtained from aerial and ground surveys made by the Radiological Safety Organization. The t^{-1.2} decay approximation was used to extrapolate the dose rate readings to H+l hour. Heavy contamination resulted only on the shot island.

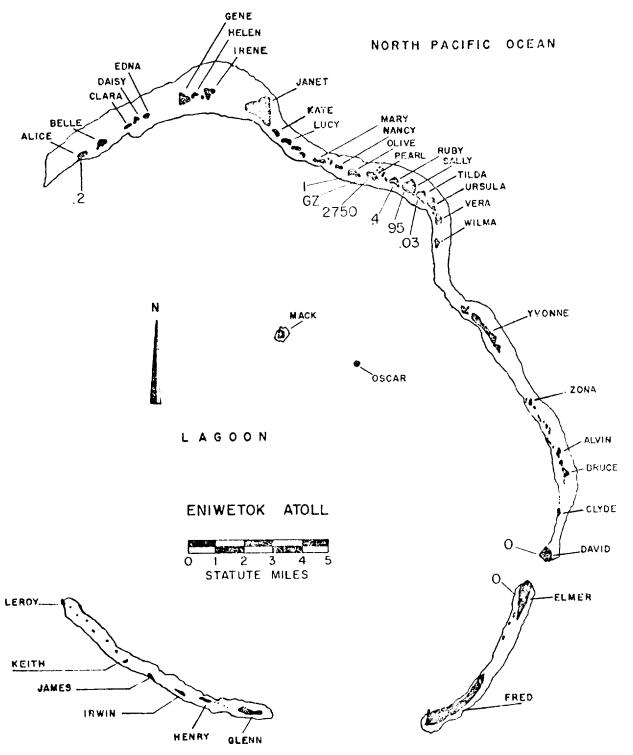


Figure 91. Operation REDWING - Inca. Island dose rates in r/hr at H+l hour.

TABLE 28 ENIMETOK WIND DATA FOR OPERATION REDWING-

INCA

Altitude	IJ−l h	our	H-hou:	ζ.	H+2 h	ours	H+5 hc	ours		hours
(MSL)	Dir S	Speed		Speed	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	անիւ	degrees	mph	degree	s mph
Surface	150	12	140	14	11.0	18	090	12	090	18
1,000	100	20	100	20	090	21	ດ <u>8</u> ်၀	21	080	16
2,000	100	22	100	23	090	24	090	23	080	20
3,000	110	26	100	26	090	28	100	29	080	26
4,000	110	29	100	29	090	28	100	29	080	26
5,000	110	2 9	100	29	090	29	100	29	080	23
6,000	110	29	110	29	100	30	100	28	090	20
7,000	100	2 9	100	29	100	30	100	24	090	17
8,000	100	29	100	30	100	31	100	24	110	23
9,000	090	29	090	29	100	29	100	24	110	24
10,000	090	29	090	28	100	24	3.00	24	1.00	24
12,000	090	2 9	090	2 8	100	24	090	50	090	21
14,000	100	29	100	26	100	23	090	22	100	23
15,000	(100)	(28)	(100)	(26)	(100)	(23)	(100)	(21)	(100)	(22)
16,000	100	28	100	26	100	23	100	21	100	22
18,000	080	24	080	24	090	23	110	20	090	22
20,000	080	2 2	080	23	0 90	26	100	22	090	20
25,000	010	2 5	020	22	040	16	010	13	040	09
30,000	240	18	220	16	170	7.5	180	14	150	13
35,000	210	25	200	23	170	17	170	14	210	10
40,000	210	30	210	29	200	26	270	17	260	30
45,000	2 30	36	240	36	260	35	270	31	300	26
50,000			300	23	320	24	020	17	100	13
55,000			350	22	330	21	110	21	110	14
60,000							100	2 5	090	24
65,000							100	29	080	24
70,000							090	49	100	54
75,000							100	53	100	42
80,000							110	49	100	43
85,000						_	100	54 95	090	56
90,000							090	83	090	7 ⁴
95,000							090	97	090	44
97,000 100,000							3.00	85	100	43
MODEC +							1.00	02		

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 54,400 ft MSL at H+5 hours.
- 3. Wind data was obtained by the weather station on Eniwetok Island.
- 4. H-hour values were interpolated from data taken at H-1 hour and H+2 hours.
- 5. At the surface the air pressure was 14.63 psi, the temperature 28.6°C and the relative humidity 81%.

Figure 92. Hodographs for Operation REDWING -

Inca

+

エナの

H+2

H-Hour

Dakota

PPG Time GMT DATE: 26 June 1956 25 June 1956 TIME: 0606 1806

Sponsor: LAST.

STTE: PPC - Bikini - 5,000 ft south of Dog 116 36' 10" N 165° 27' 05" E Site elevation: Sea level

HEIGHT OF DEPST: Surface

HEIGHT OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD FOR HEIGHT: 75,000 ft MSL CLOUD BOTTOM HEIGHT: 55,000 ft MSL

REMARKS:

Only island dose-rate readings are available. They were obtained from aerial and ground surveys made by the Radiological Safety Organization. The t^{-1.2} decay approximation was used to extrapolate the dose rate readings to H+1 hour. This shot produced less contamination on the islands than expected. However, the water adjacent to the northern islands was heavily contaminated.

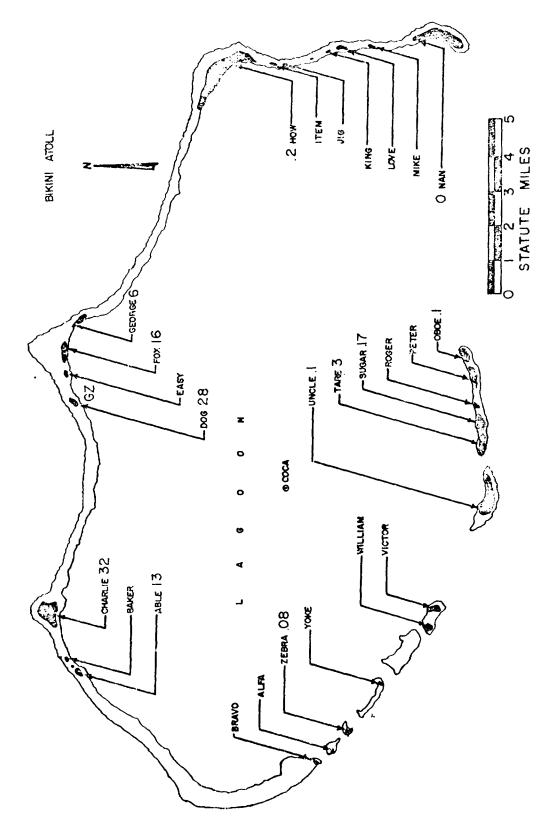


Figure 93. Operation REDWING -

Dakota. Island dose rates in r/hr at H+1 hour.

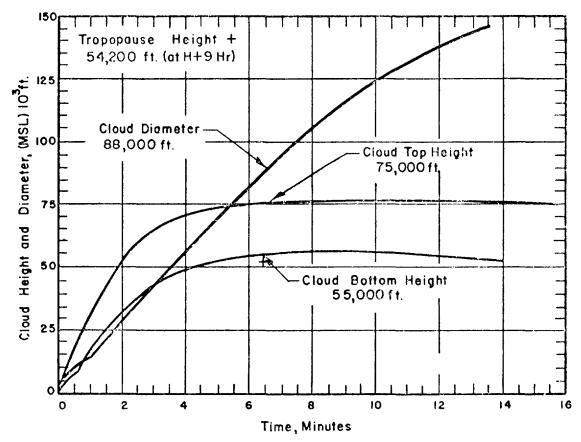
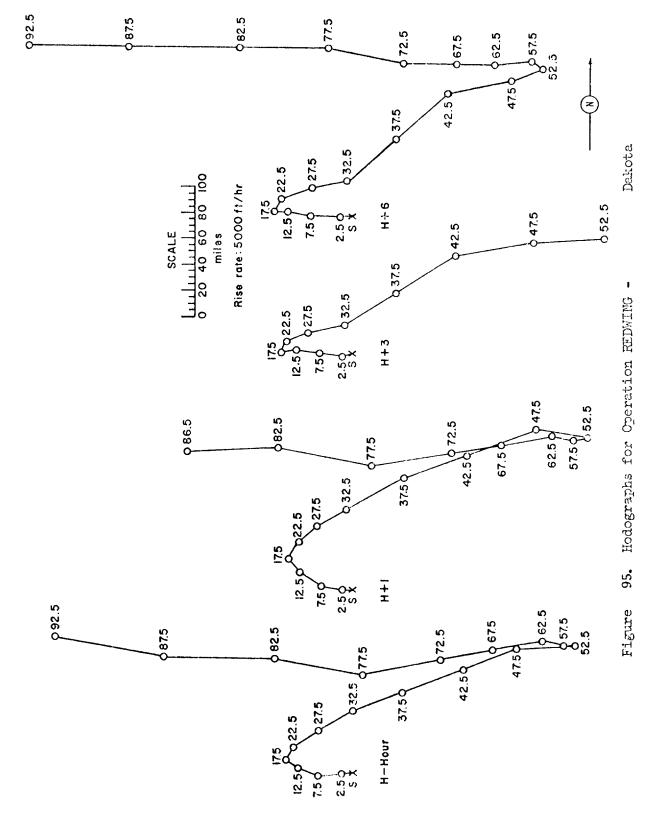


Figure 94. Cloud Dimensions: Operation REDWING - Dakota


TABLE 29 BIKINI WIND DATA FOR OPERATION REDWING-

DAKOTA

Altitude] [-	4 hrs		1 hr	Н	In.	114	3 hrs	H-I	6 hrs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
feet	deg	ուլժո	deg	mph	deg	mph	deg	mph	deg	mph
Surface	070	17	080	21	090	17	080	15	090	18
1,000	070	17	080	21			070	18	090	17
2,000	060	13	080	18			080	21	100	21
3,000	080	17	080	17	110	2.1	090	23	100	25
4,000	080	16	070	17	110	17	100	22	090	26
5,000	120	15	070	17	100	15	100	1.7	090	22
6,000	120	18	090	15	100	1.6	110	13	080	17
7,000	110	18	080	13	100	14	110	15	100	16
8,000	120	15	1.00	17	1.20	16	110	17	110	18
9,000	130	13	110	18	120	16	100	18	100	20
10,000	130	14	100	14	120	16	100	17	100	16
12,000	120	12	110	15	110	15	120	10	090	16
14,000	060	06	100	13	130	15	080	12	080	10
16,000	310	05	080	07	160	09	090	07	100	07
18,000	190	06	210	10	190	09	240	07	210	05
20,000	250	08	210	07	210	$1^{\hat{4}}$	200	09	210	09
25,000	270	08	240	25	230	1.8	250	17	250	23
30,000	230	14	240	33	240	25	260	2 7	260	26
35,000	250	25	250	32	240	5 <u>1</u>	240	45	230	48
40,000	250	4 <u>1</u>	240	45	250	51	240	54	230	54
45,000	250	58	250	35	250	57	260	60	260	48
50,000	270	35	250	54	280	35	270	53	250	22
55,000	080	09			090	ύ8			130	10
60,000	100	22			100	16			080	28
65,000	080	33			080	39			090	28
70,000	100	45			080	39			090	40
75,000	080	58			080	62			100	58
80,000	090	63			100	74			090	71
85,000	090	81			090	85			090	ė7
90,000	100	89							ກ່ອ0	77

^{1.} Tropopause height was 54,200 ft MSL at H+9 hours.

Wind data was obtained on board the U.S.S. Curtiss.
 At H-hour the sea level pressure was 1009.1 mb, the temperature 82.0°F, the dew point 75.0°F and the relative humidity 80.0%.

Mohawk

PPG Time GMT DATE: 3 Jul 1956 2 Jul 1956

TIME: 0606 1806

Sponsor: UCRL

SITE: PPG - Eniwetok - Ruby 11° 30' 38" N

162° 18' 39" E

Site elevation: Sea level

HEIGHT OF BURST: 300 ft

TYPE OF BURST AND PLACEMENT:
Tower burst over coral soil

CLOUD TOP HEIGHT: 65,000 ft MSL CLOUD BOTTOM HEIGHT: 42,000 ft MSL

REMARKS: The dose-rate readings on the islands of the atoll were taken by aerial and ground surveys of scientific projects between H+9 hours and H+56 hours. The experimentally determined gamma field decay exponent has used to extrapolate the dose rate readings to H+1 hour. Extremely heavy local contamination resulted on Ruby. In addition, significant amounts of contamination were deposited on the northern islands of the atoll. The readings taken between sites, Janet and Olive, were corrected for the small dose rates observed there before the shot. No such corrections were applied to sites, Pearl and Sally, because the contamination from shot Mohawk was so heavy that the preshot dose rates could be neglected. The readings in the vicinity of the crater were taken between H+32 hours and H+56 hours. The average field decay exponent was used to extrapolate the readings to H+1 hour. Approximately 2 hours after detonation, light fallout started on Elmer and continued for one hour. Peak intensity was 22 mr/hr.

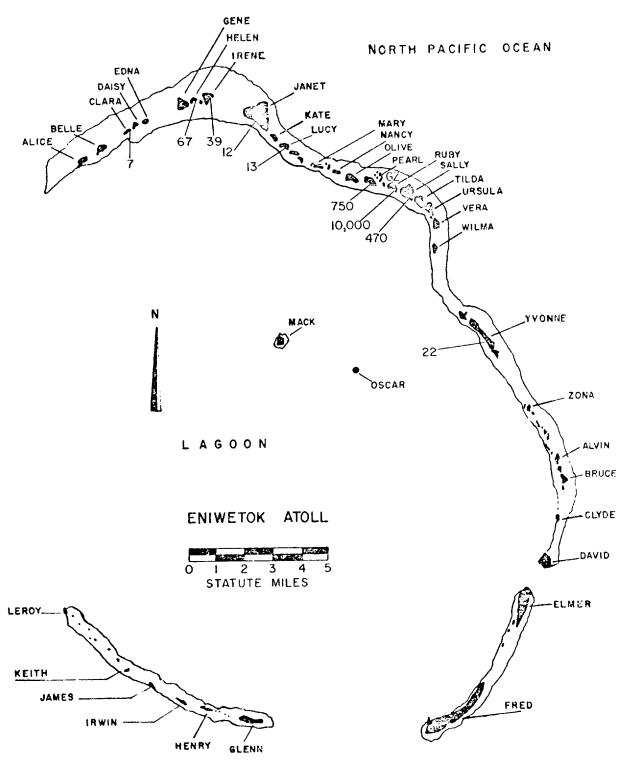
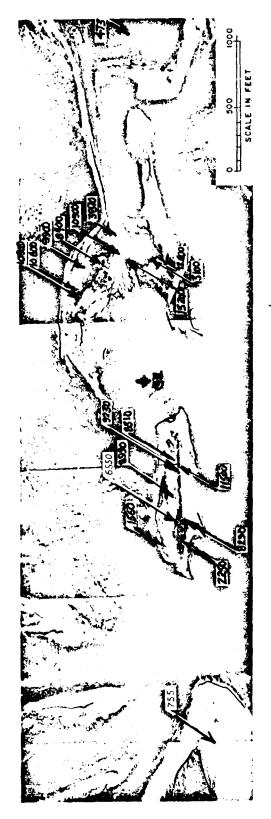



Figure 96. Operation REDWING - Island dose rates in r/hr at H+l hour.

Mohawk.

Dose rate readings near the Mohawk crater in r/hr at H+1 hour 97.

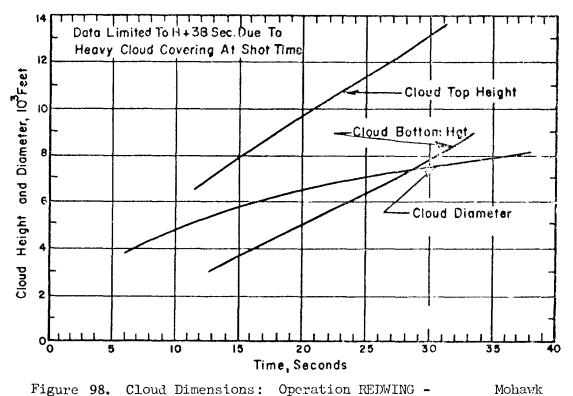
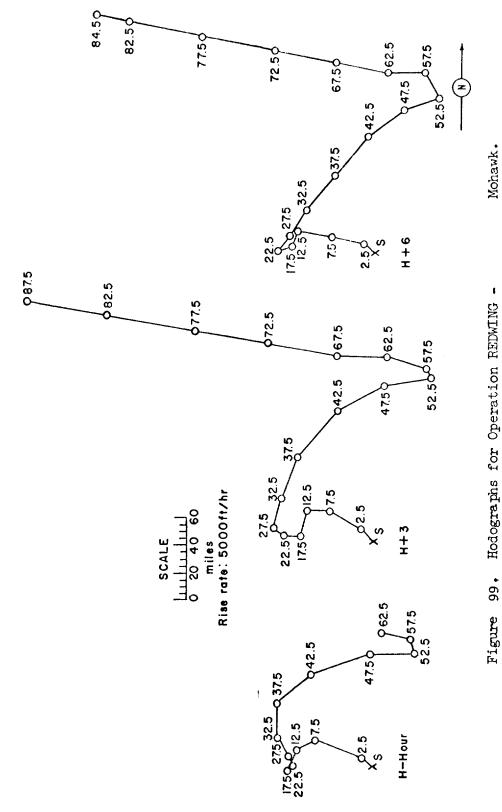


Figure 98. Cloud Dimensions: Operation REDWING -

TABLE 30 ENIVEROK WIND DATA FOR OPERATION REDWING -

MOHAWK

Altitude	H-3 ho	ours	lI-hot	ירו	H+3 he	Burs	II+6 ho	urs
(MSL)	Dir	Speed	Dia	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph	degrees	mph
G 0	3.00	~ 0	200	0.7	210	2.0	3.00	n O
Surface	130	28	130	21	J/10	18	130	18
1,000	1.10	24	110	18	090	18	090	20
2,000	110	2lt	120	23	100	23	090	21.
3,000	1.00	26	11.0	26	120	25	090	23
4,000	100	22	110	30	120	25	090	23
5,000	110	20	13.0	37	120	26	100	23
6,000	110	23	120	35	120	2]	110	23
7,000	090	55	150	29	110	16	130	$5\bar{h}$
8,000	090	50	120	55	100	18	120	26
9,000	090	16	100	16	100	18	120	26
10,000	080	15	060	15	090	16	1.00	25
12,000	070	12	070	18	060	18	070	16
14,000	040	07	050	18	030	17	050	14
15,000			(020)	(16)	(010)	(17)	(020)	(13)
16,000	090	09	350	1 / †	350	3.7	360	13
18,000	120	10	280	0 9	070	08	020	09
20,000	140	20	210	03	030	12	070	10
25,000	270	10	160	06	130	07	220	J [.] J [†]
30,000	260	29	150	$\mathfrak{I}^{)\dagger}$	190	20	210	22
35,000	240	36	180	5/1	200	32	220	32
40,000	240	54	230	32	220	1+1+	220	38
45,000	250	51	250	45	240	jt Ο	230	35
50,000	270	32	270	32	26 0	32	250	25
55,000	170	09	160	80	150	07	150	18
60,000	100	10	100	20	110	29	090	24
65,000					090	35	100	38
70,000					100	1,8	100	45
75,000					1.00	54	100	52
80,000					100	65	100	56
82,000							100	56
85,000					100	61	900 Day 4-0	
90,000					090	74		
95,000					090	79		
100,000					090	88		
102,000			D-1 SEP 846		090	88		
-								


^{1.} Numbers in parentheses are estimated values.

^{2.} Tropopause height was 56,800 ft MSL.

^{3.} Wind data was obtained by the weather station on Eniwetok Island.

^{4.} H-hour values interpolated for 45,000 ft and above from H-3 hours and H+3 hours data.

^{5.} At the surface the air pressure was 14.64 psi, the temperature 26.5°C, the dew point 22.8°C and the relative humidity 81%.

Apache

PPG Time GMP DATE: 9 Jul 1956 8 Jul 1956 TIME: 0606 1806 Sponsor: UCRL

SITE: PPG - Eniwetek - Flora
11° 40' 17" N
162° 12' 01" E
Site elevation: Sea level

HEIGHT OF BURST: Surface

TYPE OF EURCY AND PLACEMENT:
Surface burst from barge on water over the Mike crater

CLOUD FOR HEIGHT: 66,700 It NOW CLOUD BOTTOM HEIGHT: 36,000 It NOW

REMARKS:

Only island dose rate readings are available. These were taken by aerial and ground surveys made by the Radiological Safety organization. The $t^{-1\cdot 2}$ decay approximation was used to extrapolate the dose rate readings to II+1 hour. This shot produced exceptionally heavy contamination throughout the upper islands of the atoll. Water in the north end of the lagoon was highly contaminated for a considerable distance from the shot island, and as the silt and debris were moved out by lagoon currents, the contamination spread widely.

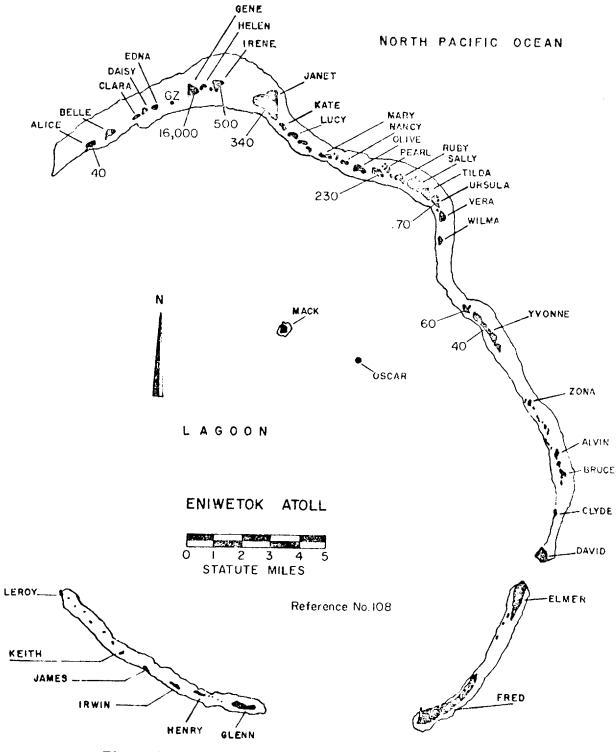
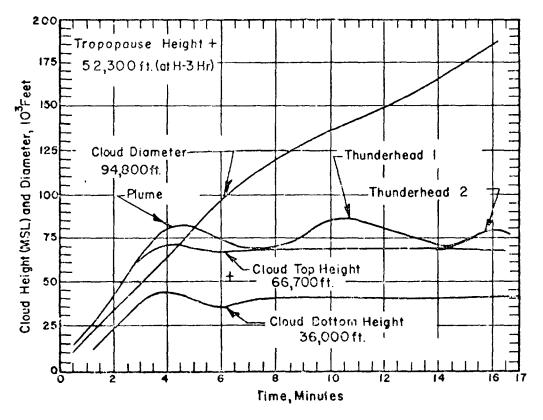
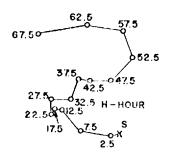
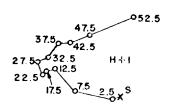
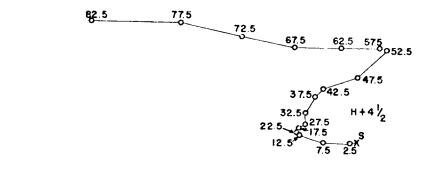


Figure 100. Operation REDWING - Apache. Island dose rates in r/hr at H+l hour.


Figure 101. Cloud Dimensions: Operation REDWING - Apache.


TABLE 31 ENTWEROK WIND DATA FOR OPERATION REDWING - APACHE

Altitude	H-1 1	iour	H-hour		H+1 bo	our		ours	11+9 ho	วนชุธ
(MSL)	Di.r	Speed	Dir	Opecd	Dir	Speed	Dia	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph	degrees	myh	degrees	riqui
Surface	070	12	070	12	070	12	070	15	090	14
1,000	070	14	070	16	060	20	080	21	080	16
2,000	070	14	070	18	070	23	080	23	090	17
3,000	080	12	080	17	070	24	090	23	090	24
4,000	100	15	090	20	080	26	090	23	100	28
5,000	1.00	15	1.00	23	100	31	090	23	100	25
6,000	110	15	110	18	110	22	090	51	100	5h
7,000	110	17	110	18	120	21	090	21	100	21.
8,000	130	16	120	22	100	21	100	21	100	21
9,000	130	18	130	21	130	23	110	21	3.10	20
10,000	140	18	140	21	140	23	110	21	110	20
12,000	150	09	150	10	140	13	110	15	110	18
14,000	120	02	120	03	110	06	160	02	100	12
16,000	060	07	060	06	060	05	230	07	130	12
18,000	040	05	020	05	350	05	310	02	300	09
20,000	050	02	030	05	020	07	020	05	360	09
25,000	230	07	190	08	160	09	230	07	320	3.2
30,000	300	1.0	270	10	250	09	180	09	210	13
35,000	110	51+	200	<u>1,4</u>	210	15	210	\mathfrak{J}_{μ}	210	20
40,000	310	10	290	09	280	07	220	07	210	15
45,000	280	16	270	16	260	17	250	28	230	28
50,000	2 20	17	220	26	230	37	220	35	230	31
55,000	180	28	160	23			090	04	160	36
60,000	100	30	100	30			090	32	080	41
65,000	080	39	080	39			090	147	100	46
70,000							100	1,1,1	100	55
75,000							100	54	090	54
80,000							090	72	090	71
89,000			~				090	108		
90,000		***			***				110	106
93,000		~							110	96

- 1. Numbers in parentheses are estimated values.
- 2. Tropopause height was 52,300 ft MSL at H-3 hours.
- 3. Wind data was obtained by the weather station on Eniwetok Island.
- 4. H-hour values interpolated; H-1 hour and H+1 hour data was used for surface through 50,000 ft; H-1 hour and H+4 $\frac{1}{2}$ hours data was used for 55,000 ft and above.
- 5. At the surface the air pressure was 14.63 psi, the temperature 26.8°C, the dew point 23.9°C, and the relative humidity 8h%.



Figure 102. Hodographs for Operation REDWING -

Apache.

Navajo

PPG Time GMT

DATE: 11 Jul 1956 10 Jul 1956

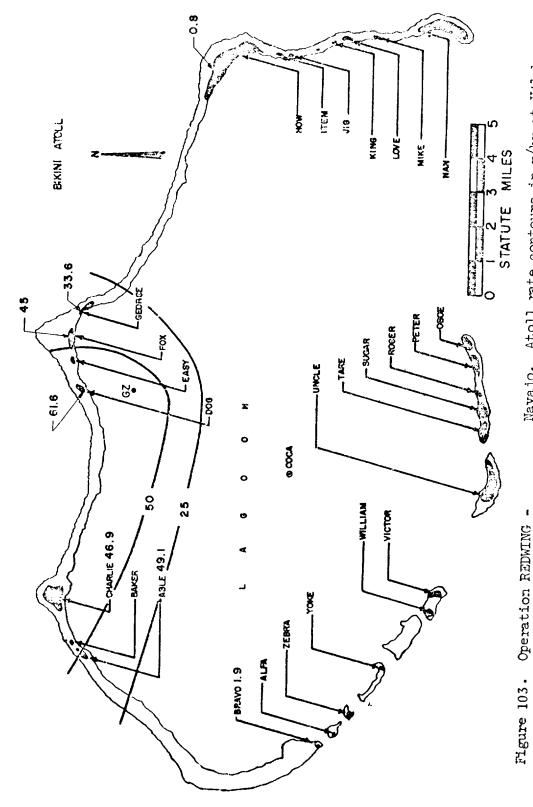
TIME: 0556 1756

Sponsor: LASL

SITE: PPG - Bikini - South of Dog 11° 39' 48" N 165° 23' 14" E Site elevation: Sea level

HEIGHT OF BURST: 15 ft

TYPE OF BURST AND PLACEMENT:


Surface burst from barge on
water; center of gravity
approx. 15 ft above surface
of water; depth to bottom-215 ft

CLOUD TOP HEIGHT: 85,000 ft MSL CLOUD BOTTOM HEIGHT: 51,200 ft MSL

REMARKS:

The on-site fallout pattern was drawn from island readings taken by scientific projects supplemented by fallout sample collections on rafts and barges in the lagoon. The survey readings were obtained on D-day. A gamma decay exponent determined from laboratory gamma decay measurements, was used to convert the D-day readings to H+1 hour values. Light fallout occurred on Nan approximately 18 hours after detonation, with peak gamma intensities of 22 mr/hr.

The off-site fallout pattern was drawn from aerial and oceanographic surveys: The oceanographic surveys used detector probes for measuring the dose rate at depths to and below the thermocline. Water sampling equipment was used for taking of surface samples and for the collection of samples from any desired depth. The dose rate readings were extrapolated to II+1 hour by using the decay measurements of the samples collected.

Mavajo. Atoll rate contours in r/hr at H+1 hour.

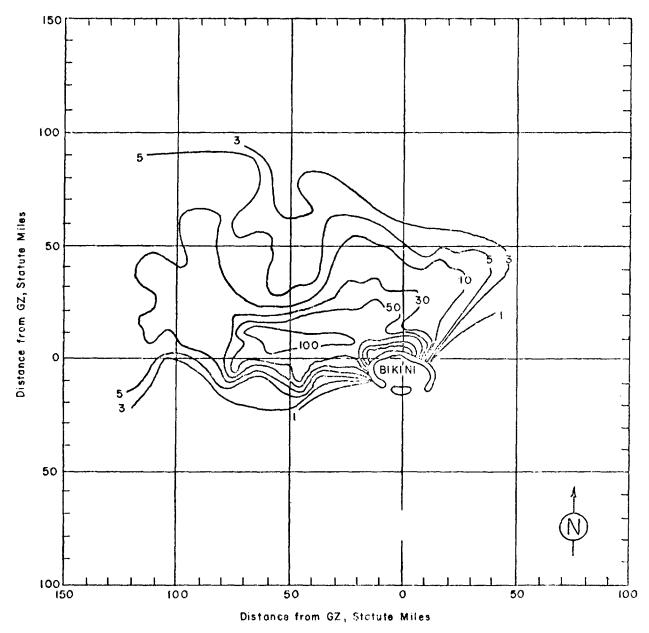


Figure 104. Operation REDWING - Navajo. Off-site dose rate contours in r/hr at H+1 hour.

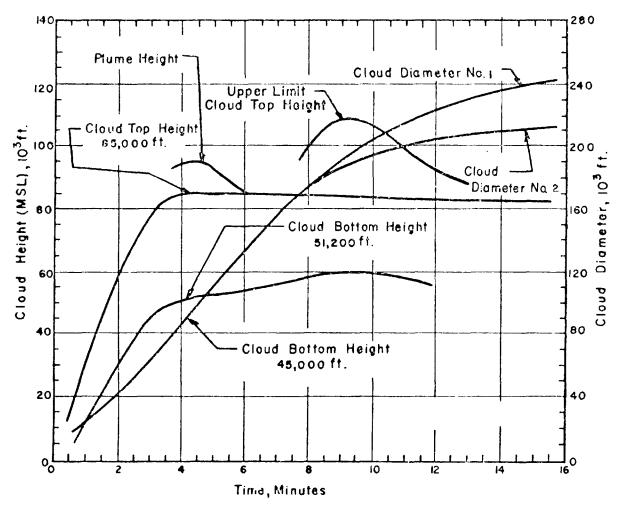
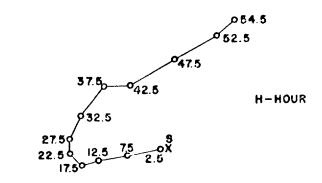
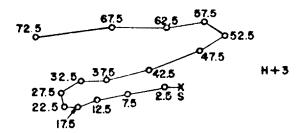


Figure 105. Cloud Dimensions: Operation REDWING -

Navajo.

TABLE 32 BIKINI WIND DATA FOR OPERATION REDWING -


NA VA JO


Altitude	li-hour		H+3 he	วนาร	H+G In	วนาธ	H+9 h	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Spaca
feet	degrees	riqn	degrees	mph	degrees	mph	degrees	mph
Surface	090	12	090	20	090	21	080	1h
1,000	080	5/1	080	24	100	20	080	14
2,000	080	26	080	25	3.00	21_{1}	090	15
3,000	080	25	080	29	090	26	1.00	20
4,000	080	25	080	26	090	26	110	21.
5,000	080	23	080	$2l_{\dagger}$	090	22	110	21
6,000	080	21	080	24	1.00	21.	100	21
7,000	080	22	080	2lt	100	21	100	21
8,000	080	23	090	23	1.00	21.	100	23
9,000	080	22	080	24	090	214	100	23
10,000	080	21	080	55	080	$5l_{1}$	090	23
12,000	070	15	080	22	070	23	070	21
14,000	060	14	070	1.3	050	17	060	15
15,000	(080)	(12)	(070)	(13)	(050)	(15)	(060)	(15)
16,000	100	10	070	13	060	J14	050	1.6
18,000	100	10	080	10	060	13	070	13
20,000	J)+O	09	090	80	1.00	07	090	80
25,000	180	80	170	09	270	03	070	05
30,000	210	17	240	13	260	TI^{\dagger}	290	15
35,000	220	24	270	17	5/10	16	2/0	22
40,000	270	18	260	29	5 /tO	32	5/10	34
45,000	5/10	35	250	37	230	42	220	38
50,000	5/10	33	240	51	5/10	30	250	34
52 ,0 00	230	37			~			
55,000			120	$\mathcal{I}_{I^{+}}$	300	06	050	18
60,000			080	25	110	30	1.1.0	25
65,000			090	40	090	35	080	35
70,000			0 80	52	090	47	090	1414
72,000					090	48		
74,000							090	59

^{1.} Numbers in parentheses are estimated values.

^{2.} Wind data was obtained on board the U. S. S. Curtiss.

^{3.} Tropopause height was 50,000 ft MSL.
4. At H-hour the sea level pressure was 1010.2 mb, the temperature 81.2°F, the dew point 74.0°F and the relative humidity 80.0%.

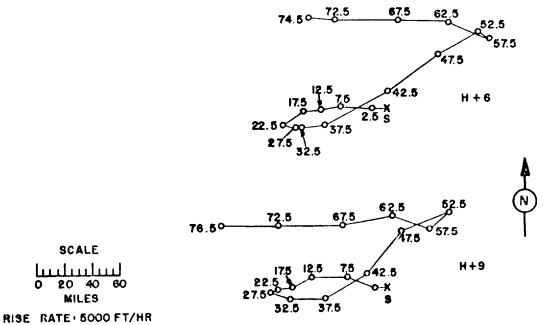


Figure 106. Hodographs for Operation REDWING -

Navajo.

OPERATION REDWING -

Tewa

DATE: 21 Jul 1956 20 Jul 1956

TIME: 0546 1746

TOTAL YUELD: 5 Mt

FIREBALL DATA:

Time to 1st minimum: 185 to 240 msec

Time to 2nd maximum: 2.08 see Radius at 2nd maximum: 5,904 ft

CRATER DATA:

Diameter: 4,000 ft Depth: 129 ft Sponsor: UCRL

SITE: Pro Bikini - Charlie -

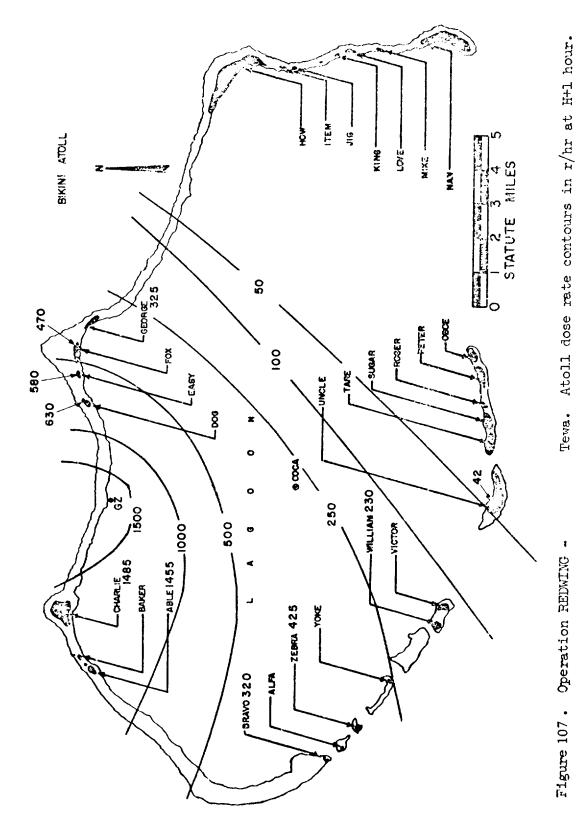
Dog Reef 11° 40' 26" N 165° 20' 22" E

Site elevation: Sea level

HEIGHT OF BURSE: 15 1t

TYPE OF BURGT AND PLACEMENT:

Surface burst from barge on
water; center of gravity 15
ft above surface of water;


depth to bottom 25 ft.

CLOUD TOP HEIGHT: 99,000 ft Maid CLOUD BOTTOM HEIGHT: NM

REMARKS:

The on-site fallout pattern was drawn from island readings taken by scientific projects, supplemented by fallout sample collection on rafts and barges in the lagoon. Actual field decay measurements indicated a decay exponent. This decay exponent was used to extrapolate the dose rate readings to H+1 hour. The extremely heavy rains which followed this shot had no observable effect on the decay rates. On all islands the contamination remaining from previous shots was negligible in comparison with the high radiation levels produced by this shot. Very slight fallout occurring approximately 18 hours after firing increased the background on Nan by approximately 4 mr/hr. In contrast to the other barge shots, contamination was also experienced on the atoll's southwestern islands.

The off-site fallout pattern was drawn from oceanographic surveys. The oceanographic surveys used detector probes for measuring the dose rate at depths to and below the thermoeline. Water-sampling equipment was used for the taking of surface samples and for the collection of samples from any desired depth. The dose rate readings were extrapolated to H±l hour by using the decay measurements of the samples collected. Fallout from the firing of this device contaminated Eniwetok atoll. The fallout on Eniwetok commenced approximately 9 hours after the device was fired with a peak of 100 to 120 mr/hr.

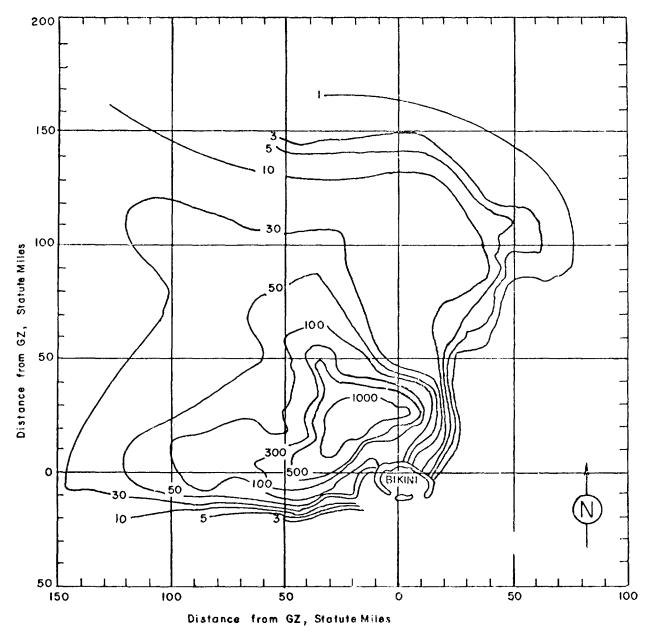


Figure 108. Operation REDWING - Tewa.
Off-site dose rate contours in r/hr at H+1 hour.

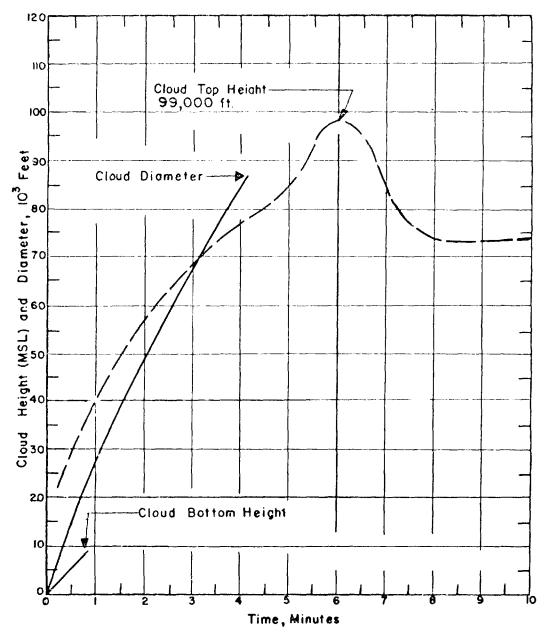


Figure 109. Cloud Dimensions: Operation REDWING - Tewa.

TABLE 33 BUKINI WIRD DATA FOR OPERATION REDWING -

TEWA

Alltitude	H-1(0)	13.	H+3 ho	ก มา ต	H+7 hor	ms	II+9 ho	mrs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	Dir	Speed
fect	degrees	ugili	degrees	mph	degrees	mTd1	degrees	mpli
Surface	090	15	090	16	100	15	080	22
1,000	080	17	090	1.6	1.00	16	080	13
2,000	090	1γ	100	17	090	3.7	090	16
3,000	110	18	1.00	20	100	24	090	TI^{\dagger}
4,000	110	18	100	20.	1.00	2 ⁽)	090	18
5 , 000	110	3.8	100	20	090	2.0	100	23
6,000	100	20	110	20	090	22	3.00	23
7,000	1.00	22	110	23	090	20	3.00	22
8,000	090	23	100	24	100	18	090	21
9,000	090	21	110	22	090	21	090	15
10,000	070	20	100	17	090	3.8	090	15
12,000	080	17	100	15	090	1.6	080	1.3
14,000	080	16	100	10	080	10	060	09
15,000	(100)	(12)	(100)	(13)	(090)	(11)	(080)	(12)
16,000	120	07	100	15	090	1.3	090	7.7
18,000	090	1.3	110	15	120	13	1.60	03
20,000	1.30	13	1.20	13	140	12	180	O_1^*
25,000	290	09	130	07	1.80	06	220	15
30,000	320	06	210	13	170	05	260	O'
35,000	190	09	260	13	150	05	270	$\perp l_{+}$
40,000	260	23	270	28	270	20	320	18
45,000	250	37	290	21	340	13	040	31.
50,000	270	25	260	21	080	50	310	1.2
55,000	110	06	070	05	080	16	1.00	17
60,000	070	33	080	37	080	21	090	28
65,000	090	52	1.00	50	300	54	1.00	1+1+
70,000	090	48	110	40	090	55	090	14.O
72,000			110	37	~~-			
75,000	080	61			090	60	090	63
80,000	100	55			090	67	090	69
85,000	100	56	~ ~ ~		090	78		
90,000					090	1.08		

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was obtained on board the U. S. S. Curtiss.
- 3. Tropopause height was 52,000 ft MSL. 4. At M-hour the sea level pressure was 1009.3 mb, the temperature 82°F, the dew point 77°F and the relative humidity 85%.

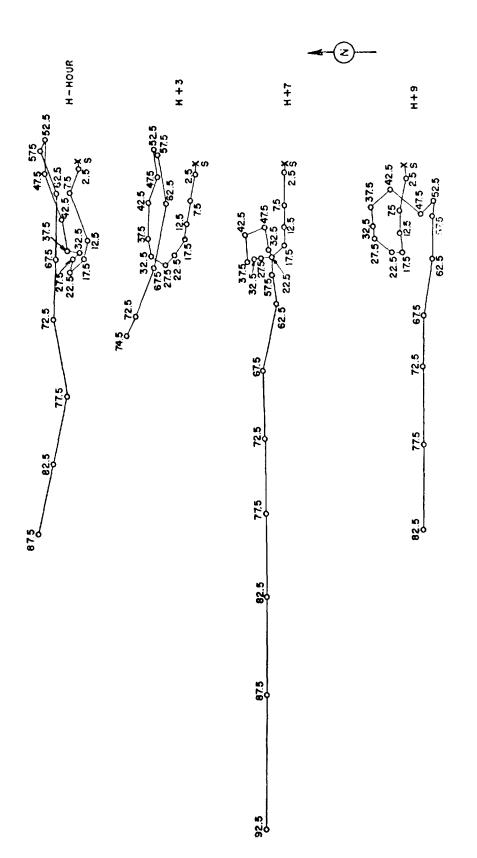


Figure 110. Hodographs for Operation REDWING -

OPERATION REDWING -

Huron

PPG Time GMT

DATE: 22 July 1956 21 July 1956

TIME: 0616 1816

Sponsor: LASL

SITE: PPG - Eniwetok - Off Flora
11° 40' 19" N
162° 22' 09" E
Site elevation: Sea level

HEIGHT OF BURST: Surface

TYPE OF BUKCT AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 54,000 ft MSL CLOUD BOTTOM HEIGHT: 27,000 ft MSL

REMARKS:

Only island dose-rate readings are available. These were obtained from aerial and ground surveys made by the Radiological Safety organization. The ${\rm t}^{-1\cdot2}$ decay approximation was used to extrapolate the dose rate readings to II+1 hour.

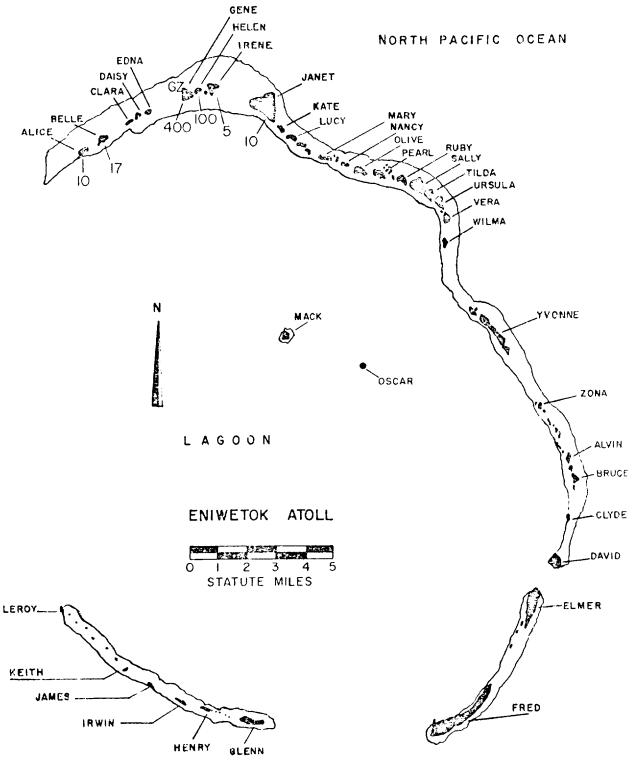
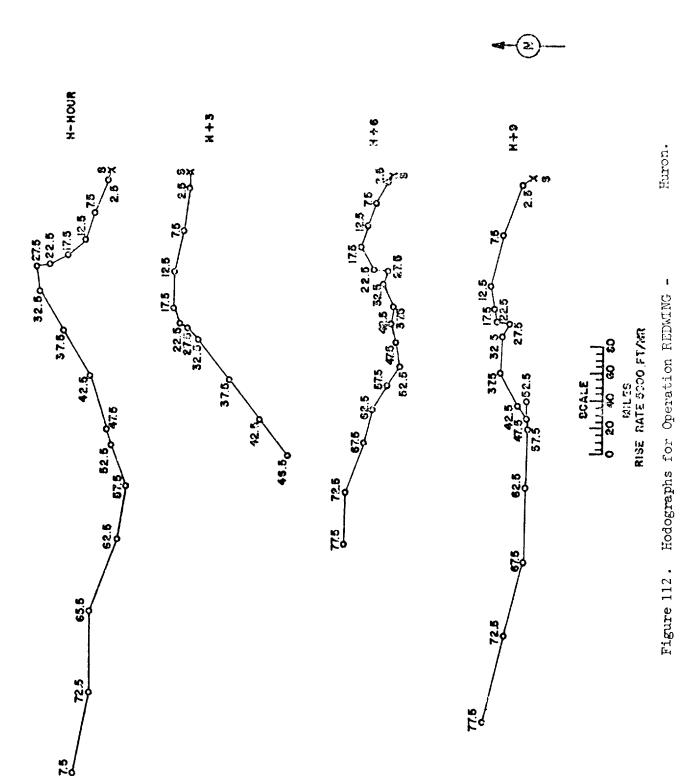


Figure 111. Operation REDWING - Huron.
Island dose rates in r/hr at H+1 hour.


	Dir degrees	Speed mph	Dir	Speed	15.1			
Surface				opecu	Dir	Speed	Dir	Speed
		_	der,rees	mph	degrees	mj./li	degrees	mph
	120	114	090	1.8	1.30	16	7)10	23
	100	1.8	13.0	20	110	14	120	29
2,000	1.00	1.8	110	51 ⁴	090	$1^{j_{i}}$	1.10	28
3,000	100	18	110	29 29	100	16	110	32
4,000	1.00	18	100	<i>29</i> 30	060	15	110	
	1.00	55	100	_	120	1.)4	1.10	35
5,000				29 28		1.6		37
6,000 7,000	110	22	100		120		1.10	38
7,000	120	18	100	25	110	1.6 14	110	38
8,000	120	22	090	23	110		110	35 35
9,000	110	23	090	25 25	110	74	100	35
10,000	110	18	100	28	110	1)+	100	35
12,000	110	12	110	21	110	J) [†]	090	28
14,000	120	14	1.00	23	080	18	080	23
15,000	(140)	(13)	(090)	(23)	(110)	(13)	(080)	(16)
16,000	160	12	080	23	130	07	080	09
18,000	160	12	070	10	090	15	090	12
20,000	150	12	060	09	060	1.8	080	07
25,000	170	09	030	05	360	07	010	07
30,000	080	1.6	0,10	10	110	06	120	09
35,000	060	32	050	37	060	1.4	090	24
40,000	060	40	050	39	100	09	060	25
44,000			050	39				
45,000	070	52		~ ~	070	80	050	09
50,000	070	08			080	15	260	10
55,000	070	23			120	13	080	14
60,000	100	38			120	20	090	140
65 , 000	110	51			1.00	22	090	52
70,000	090	56			110	35	100	53
75,000	100	71			090	37	1.00	63
80,000	100	79			070	23	100	75
85,000	100	87			090	23	090	82
90,000	100	107						
99,000							090	117

^{1.} Numbers in parentheses are estimated values.

^{2.} Tropopause height was 50,000 ft MSL at H-hour.

^{3.} Wind data was obtained by the weather station on Eniwetok Island.

^{4.} At the surface the air pressure was 14.62 psi, the temperature 27.4°C, the dew point 24.5°C and the relative humidity 84%.

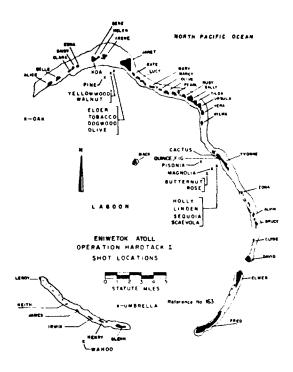


Figure 113. Operation HARDTACK I, Shot Locations, Eniwetok Atoll

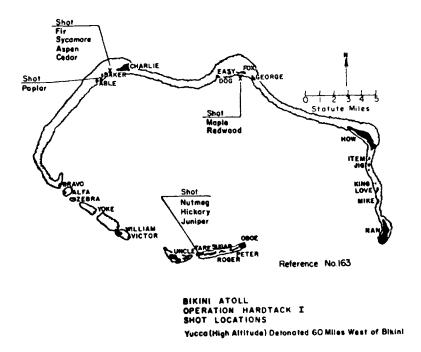


Figure 114. Operation HARDTACK I, Shot Locations, Bikini Atoll

OPERATION HARDTACK I - Yucca

 PPG Time
 CMT

 DATE:
 28 Apr 1958
 28 Apr 1958

 TIME:
 1440
 0240

Sponsor: DOD

SITE: PPG - USS Boxer 60 mi

west of Bikini 12° 37' 00" N 163° 01' 30" E

Site elevation: Sea level

HEIGHT OF BURST: 86,000 ft

TYPE OF BURST AND PLACEMENT: Air burst from free balloon

over water

CLOUD TOP HEIGHT: NM CLOUD BOTTOM HEIGHT: NM

REMARKS: No fallout

TABLE 35 BIKINI WIND DATA FOR OPERATION HARDTACK I -

43111	77 7	
Altitude	H-hou Dir	
(MSL)		Speed
feet	degrees	mph
Surface	040	16
1,000	050	29
2,000	050	35
3,000	070	36
4,000	130	09
5,000	350	ıź
6,000	360	14
7,000	150	15
8,000	190	12
9,000	210	09
10,000	230	06
12,000	350	12
14,000	320	15
15,000	(320)	(15)
16,000	330	16
18,000	300	15
20,000	2 60	07
23,000	210	15
25,000	240	18
30,000	200	13
35,000	210	32
40,000	270	44
45,000	270	51
50,000	270	40
55,000	270	38
60,000	280	33
65,000	250	18
70,000	070	15
75,000	180	09

^{1.} Numbers in parentheses are estimated values.

^{2.} Wind data was taken on board ship located within 30 nautical miles of the Tower at Nan Island, Bikini Atoll.

^{3.} Tropopause height was 53,000 ft MSL.4. At H-hour the surface air pressure was 14.67 psi, the temperature 25.7°C, the dew point 69.6°F, and the relative humidity 75%.

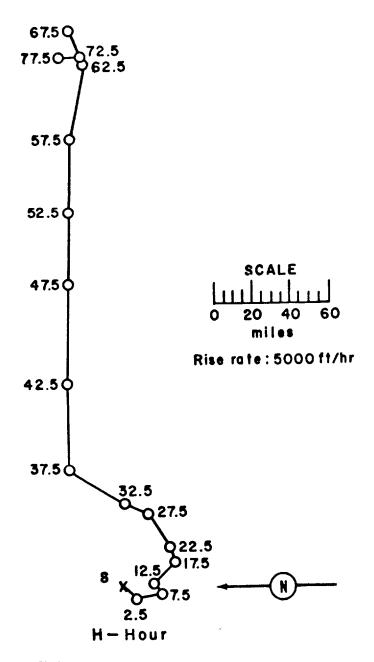


Figure 115. Hodograph for Operation HARDTACK I -

Yucca.

Cactus

PPG Time GMT 5 May 1958

TIME: 0615 1815

TOTAL YIELD: 18 kt

FIREBALL DATA:

Time to 1st minimum: 12 msec Time to 2nd maximum: 130 msec Radius at 2nd maximum: 656 ft

CRATER DATA:

Diameter: 340 ft
Depth: 34.5 ft
Lip Height: 8 to 14 ft
Lip Width: 115 to 170 ft

Sponsor: LASL

SITE: PPG - Eniwetok - Yvonne

11° 33' 23" N 162° 21' 15" E

Site elevation: Sea level

HEIGHT OF BURST: 3 ft

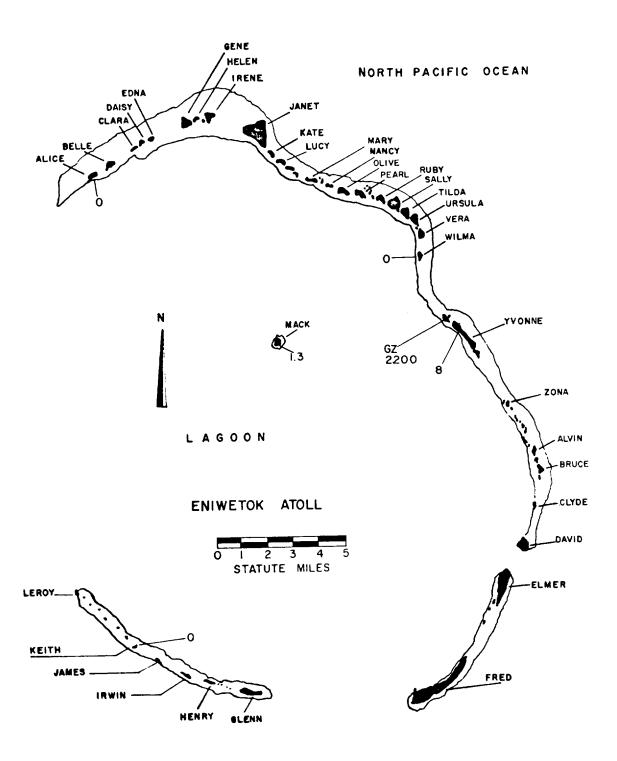
TYPE OF BURST AND PLACEMENT:
Surface burst - Platform on coral soil

CLOUD TOP HEIGHT: 19,000 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys at H+4 hours made by the Radiological Safety organization. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1.2}$ decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.



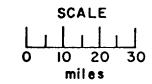

Figure 116. Operation HARDTACK I - Cactus. Island dose rates in r/hr at H+l hour.

TABLE 36 ENIWETOK WIND DATA FOR OPERATION HARDTACK I -

CACTUS

Altitude	H+3 ho	ur	H+5를 1	ours
(MSL)	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph
		- 6		- (
Surface	060	16	060	16
1,000	070	24	060	29
2,000	070	25	060	24
3,000	060	26	060	26
4,000	060	24	060	28
5,000	060	23	050	2 5
6,0 00	060	23	040	24
7,000	080	15	030	17
8,0 00	090	10	010	08
9,000	110	05	040	05
10,000	060	03	160	08
12,000	200	02	550	10
14,000	150	,12	180	,13
15,000	(130)	(15)	(160)	(13)
16,000	100	18	130	14
18,000	100	18	140	15
20,000	120	18	140	15
23,000	090	13	150	18
25,0 00	050	09	230	15
30,000	270	17	260	26
35,000			230	32
40,000	220	37	230	39
45,000	290	35	270	33
50,000	310	39	2 70	23
55,000	230	07	250	18
60,000	260	17	240	17
65,000			250	12
67,000	210	07		
70,000	120	08	090	05
75,000	070	13	080	12
80,000	080	31	090	23
85,000	080	5 2	100	33
90,000	090	60	100	40
95,000	100		100	62
96,000	100	57	000	 h0
100,000		••	090	49
105,000			090 090	51 50
110,000 112,000			090	59 61
112,000			030	01

- Number in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.
 Tropopause height was 51,000 ft MSL.
 The surface air pressure was 14.66 psi, the temperature 26.7°C, the dew point 72°F and the relative humidity 76%.

Rise rate: 5000 ft/hr

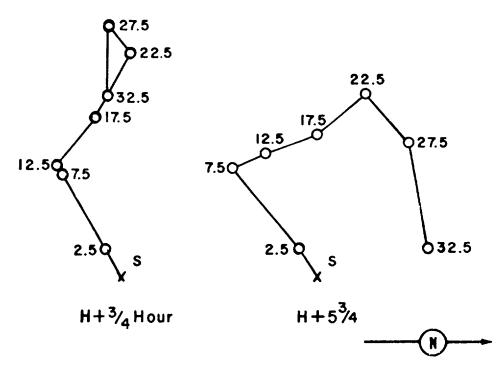


Figure 117. Hodographs for Operation HARDTACK I -

Cactus.

Fir

<u>PPG Time</u> <u>GMT</u> <u>DATE:</u> 12 May 1958 11 May 1958 TIME: 0550 1750 Sponsor: UCRL

1750

SITE: PPG - Bikini - SW of
Charlie 4,000 ft from
nearest edge of the island

11° 41' 27" N 165° 16' 25" E

Site elevation: Sea Level

HEIGHT OF BURST: 9.88 ft

CLOUD TOP HEIGHT: 90,000 ft MSL

CLOUD BOTTOM HEIGHT: NM

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the decired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

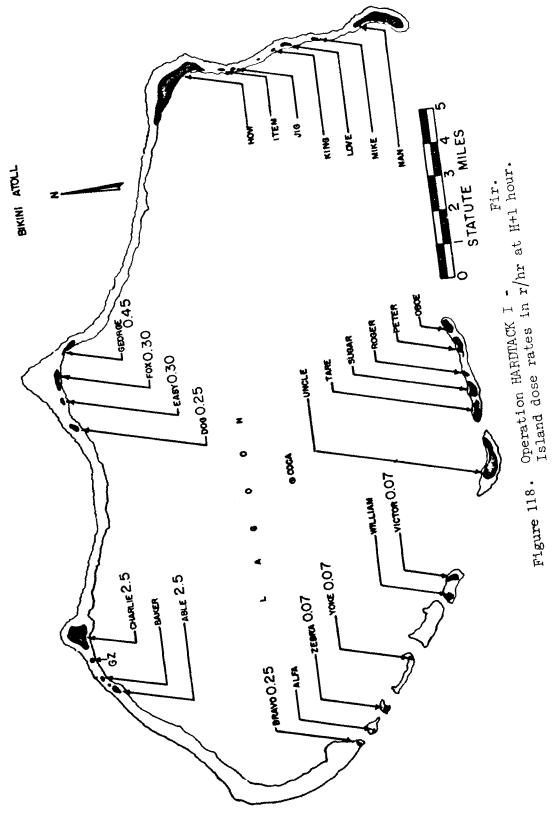


TABLE 37 BIKINI VIND DATA FOR OPERATION HARDTACK I - FIR

(MSL) Dir speed Dif Both Dif Speed Dif Speed Dif Both Dir Speed Dif D	mph 28 26 29 29 25 22 23 31
Surface 070 25 070 25 060 1,000 070 26 060 26 060 2,000 080 26 070 26 070 3,000 080 22 080 26 080 4,000 090 26 090 29 090 5,000 090 36 100 30 110 6,000 110 26 100 29 110 7,000 130 23 110 24 110 8,000 130 17 110 18 120 9,000 150 17 130 18 130	28 26 29 29 25 22 23 31
1,000 070 26 060 26 060 2,000 080 26 070 26 070 3,000 080 22 080 26 080 4,000 090 26 090 29 090 5,000 090 36 100 30 110 6,000 110 26 100 29 110 7,000 130 23 110 24 110 8,000 130 17 110 18 120 9,000 150 17 130 18 130	26 29 29 25 22 23 31
2,000 080 26 070 26 070 3,000 080 22 080 26 080 4,000 090 26 090 29 090 5,000 090 36 100 30 110 6,000 110 26 100 29 110 7,000 130 23 110 24 110 8,000 130 17 110 18 120 9,000 150 17 130 18 130	29 29 25 22 23 31
3,000 080 22 080 26 080 4,000 090 26 090 29 090 5,000 090 36 100 30 110 6,000 110 26 100 29 110 7,000 130 23 110 24 110 8,000 130 17 110 18 120 9,000 150 17 130 18 130	29 25 22 23 31
4,000 090 26 090 29 090 5,000 090 36 100 30 110 6,000 110 26 100 29 110 7,000 130 23 110 24 110 8,000 130 17 110 18 120 9,000 150 17 130 18 130	25 22 23 31
5,000 090 36 100 30 110 6,000 110 26 100 29 110 7,000 130 23 110 24 110 8,000 130 17 110 18 120 9,000 150 17 130 18 130	22 23 31
5,000 090 36 100 30 110 6,000 110 26 100 29 110 7,000 130 23 110 24 110 8,000 130 17 110 18 120 9,000 150 17 130 18 130	22 23 31
6,000 110 26 100 29 110 7,000 130 23 110 24 110 8,000 130 17 110 18 120 9,000 150 17 130 18 130	31
8,000 130 17 110 18 120 9,000 150 17 130 18 130	-
9,000 150 17 130 18 130	
	29
10,000 170 15 150 16 150	18
	13
12,000 120 08 190 07 200	13
14,000 110 08 220 14 250	10
15,000 (090) (12) (170) (10) (210)	(08)
16,000 070 14 120 07 180	06
18,000 060 07 140 06 190	02
20,000 050 07 160 03 280	01
23,000 090 05 200 03 240	06
25, 000 130 06 22 0 06 25 0	10
30,000 280 20 280 17 270	17
35,000 (255) (34) (250) (28) (235)	(32)
40,000 230 48 220 40 200	48
45,000 240 56 (250) (39) 220	55
50,000 260 45 280 39 260	33
54,000 280 26	, ,
55,000 (270) (23) (200) (25) (250)	(21)
56,000 180 12 250	18
60,000 210 05 290 08 360	0 5
64,000 080 09	 ()
65,000 (120) (12) (190) (13) (110)	(12)
67,000 360 06	
70,000 040 20 090 17 090	13
75,000 080 26 (090) (22) (090)	(16)
80,000 120 26 090 26 090	20
85,000 110 40	
88,000 100	53

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was taken on board ship located within 30 nautical miles of the Tower at Nan Island, Bikini Atoll.
- Tropopause height was 54,000 ft MSL.
 The surface air pressure was 14.64 psi, the temperature 26.7°C, the dew point 73.0°F, and the relative humidity 80%.

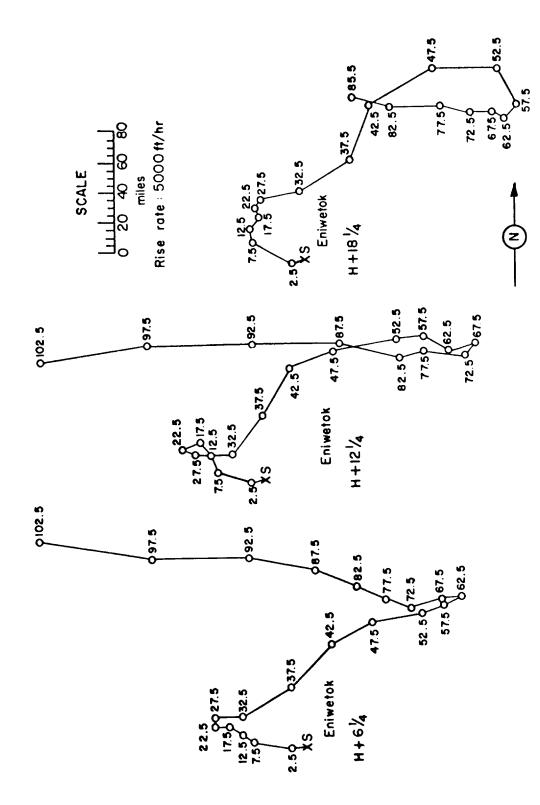


Figure 119. Hodographs for Operation HARDTACK I -

Fir.

Butternut

PPG Time GMT

DATE: 12 May 1958 11 May 1958

TIME: 0615 1815

Sponsor: LASL

SITE: PPG - Eniwetok - SW of

Yvonne

4,000 ft from the nearest

edge of the island 11° 20' 41" N 162° 21' 02" E

Site elevation: Sea level

HEIGHT OF BURST: 10.13 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on

water

Water depth: 65 ft

CLOUD TOP HEIGHT: 35,000 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys at H+4 hours made by the Radiological Safety Organization. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading coula be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1·2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

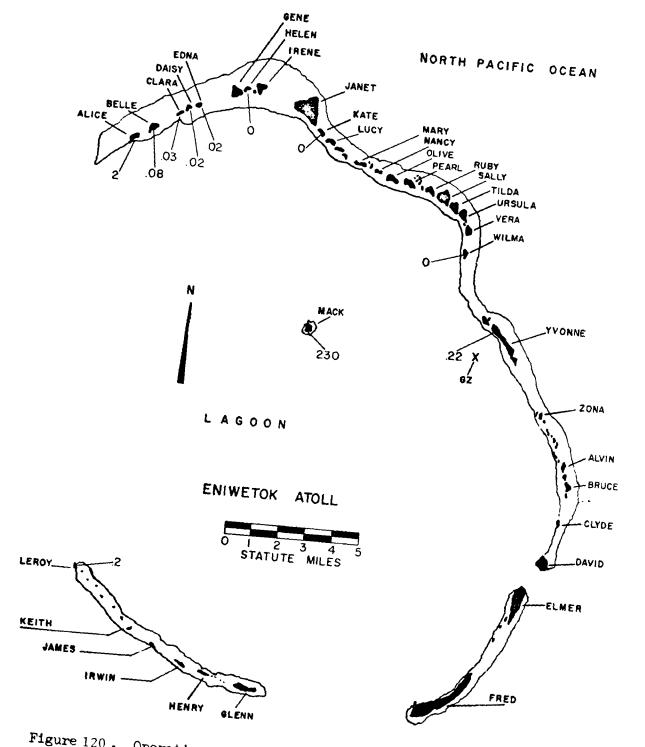


Figure 120. Operation HARDTACK I - Butternut.
Island dose rates in r/hr at H+1 hour.

TABLE 38 ENIWETOK WIND DATA FOR OPERATION HARDTACK I -

BUTTERNUT

Altitude	H-1 ho	our	H+5를 h	ours	[[+]1를 }	nours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	080	12	08 0	17	070	16
1,000	090	24	080	24	080	28
2,000	090	2 5	080	54	080	29
3,000	090	25	090	29	090	29
4,000	100	21	090	28	100	26
5,000	120	18	100	24	110	24
6,000	120	18	120	24	130	21
7,000	150	16	150	21	130	17
8,000	150	13	170	16	150	13
9,000	130	09	170	15	170	.15
10,000	100	10	120	08	160	10
12,000	090	09	190	07	230	09
14,000	080	09	150	09	200	09
15,000	(080)	(14)	(120)	(09)	(140)	(09)
16,000	070	18	090	09	080	80
18,000	100	12	110	09	070	07
20,000	100	09	090	07	070	05
23,000	110	07	160	02	340	05
25,000	Calm	Calm	200	03	300	08
30,000	,280	.22	270	17	270	24
35,000	(230)	(41)	240	36	220	33
37,000	210	49				
40,000	530	43	550	39	210	37
45,000	260	47	540	28	250	35
50,000	250	40	260	33	260	40
54,000	280	21				
55,000			250	16	260	17
60,000	200	05	250	09	300	12
65,000			080	12	250	15
66,000	070	12			050	
70,000	080	16	070	18	050	10
72,000	100	25	110	 16	700	377
75,000		 37	110	16	100	17
80,000	090 100	37	110	20	080	20
84,000 85,000	100	36	110	29	100	38
09,000			110	<i>27</i>	100	30

Numbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.
 Tropopause height was 53,000 ft MSL.
 The surface air pressure was 14.63 psi, the temperature 27°C, the dew point 74°F, and the relative humidity 80%.

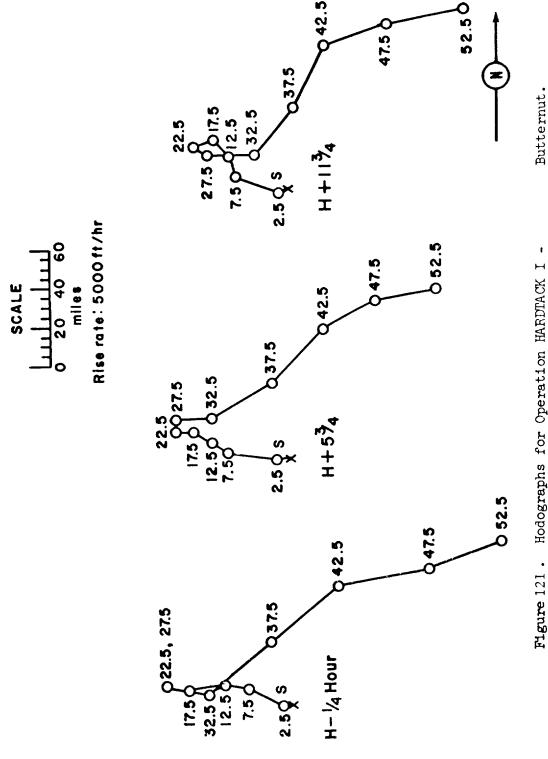


Figure 121 . Hodographs for Operation HARDTACK I -

Koa.

PPG Time GMT

13 May 1958 12 May 1958

TIME: 0630 1830

TOTAL YIELD: 1.37 Mt

FIREBALL DATA:

Time to 1st minimum: 100 msec

Time to 2nd maximum: 0.94 to 1.35 sec

Radius at 2nd maximum: 3,641 ft

CRATER DATA:

Diameter: 4,000 ft

Depth: 171 ft

Lip: Apparently washed away

Sponsor: LASL

SITE: PPG - Eniwetck - West

end of Gene 11° 40' 30" N 162° 12' 20" E

Site elevation: Sea level

HEIGHT OF BURST: 3 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from 10 ft deep tank of water sitting on coral

soil

CLOUD TOP HEIGHT: 72,200 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+h hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

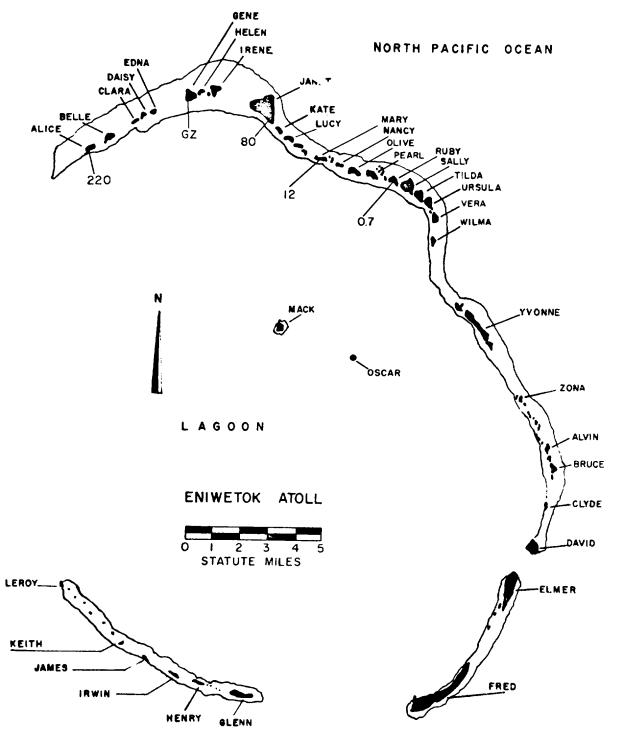


Figure 122. Operation HARDTACK I - Koa. Island dose rates in r/hr at H+l hour.

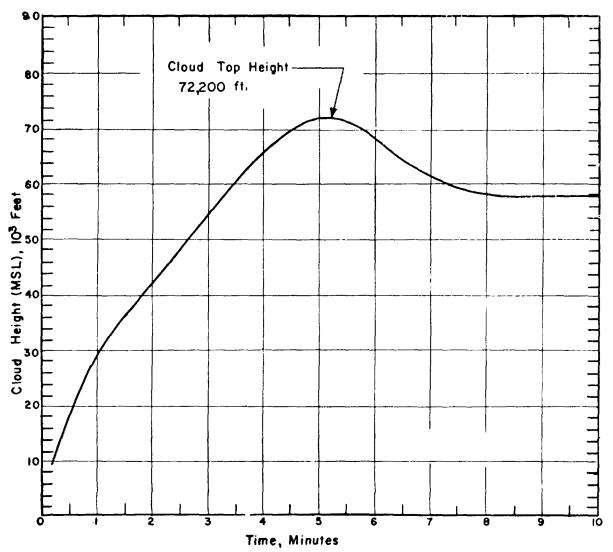


Figure 123. Cloud Dimensions: Operation HARDTACK I -

Koa.

TABLE 39 ENIWETOK WIND DATA FOR OPERATION HARDTACK I-

K QA

Altitude	I I− ∈ h	our	H+5 ho	urs	H+11 hc	urs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	050	18	060	18	060	18
1,000	070	29	080	32	080	26
2,000	070	31	070	38	080	29
3,000	080	32	070	37	080	29
4,000	080	36	380	29	090	31
5,000	090	33	080	29	100	26
6,000	100	33 29	090	23	110	2 6
7,000	100	31	100	18	100	26 26
	100	31	100	20	080	23
8,000	090		100	20	070	20 20
9,000		25		18		14
10,000	090	2 5	120		090 1 2 0	13
12,000	100	29	130	20 14		
14,000	110	25	150		120	03
15,000	(110)	(20)	(150)	(14)	(160)	(07)
16,000	120	14	140	14	190	12
18,000	110	12	140	14	180	05
20,000	070	08	130	05	220	09
23,000	200	09	180	18	180	16
25,000	270	14	160	18	170	14
30,000	250	24	240	21	250	21
35,000	190	31	170	31	180	21
40,000	550	29	190	29	,230	,31
45,000	240	40	260	52	(255)	(32)
50,000	290	36	280	35	280	33
55,000	280	13	230	14	200	33
60,000	140	17	210	07	270	,12
65,000	090	07	060	08	(510)	(09)
70,000	100	16	130	09	150	07
74,000					ঠ সূত	16
75,000	100	23	070	20	080	18
000,08	100	31	090	36	100	30
85, ∞∞	030	41	100	5 3		
90,000	090	59	110	71	100	61
92,000	090	66				
95,000			100	77		
100,000			100	83	100	68
105,000			100	85		
110,000			100	126	100	75
118,000					100	101

NOTES:

1. Numbers in parentheses are estimated values.

Monday In parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.
 Tropopause height was 57,000 ft MSL.
 The surface air pressure was the 66 miles. The surface air pressure was 14.66 psi, the temperature 27.2°C, the dew point 74° F, and the relative humidity 79%.

7

Figure 124. Hodographs for Operation HARDTACK I -

Koe.

Wahoo

	PPG Time	CPMT			
DATE:	16 May 1958	16 May 1958			
TIME:	1330	0130			

Sponsor: LASL/DOD

SITE: PPG - Eniwetok -south by SSW of Irwin about 8,000 ft from the island 11° 20' 41" N 162° 10' 44" E
Site elevation: Sea level

HEIGHT OF BURST: -500 ft under water

TYPE OF BURST AND PLACEMENT:

Underwater - Device suspended by a cable. Water depth
3,200 ft

PLUME TOP HEIGHT: 1,760 ft MSL at $15\frac{1}{2}$ sec PLUME DIAMETER: 3,400 ft MSL at $15\frac{1}{2}$ sec

REMARKS:

"Nearly all of the total gamma dose occurred within 25 minutes after zero time and was due to the passage of airborne radioactive material. Gamma doses in excess of 100r occurred within the first 15 minutes at downwind distances less than 16,000 feet. In both instances the residual field due to deposited radioactive material was relatively insignificant, although radioactive foam may represent a radiological hazard."

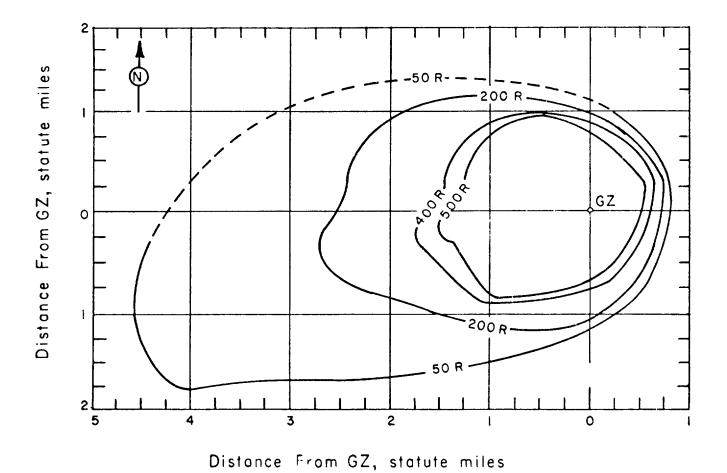


Figure 125. Operation HARDTACK I - Wahoo.
On-site cumulative dose to 6 hours in roentgens.

Altitude	H-12 h	ours	H+41, ho	urs
(MSL)	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph
Surface	090	17	080	16
1,000	090	22	080	18
2,000	090	22	080	20
3,000	090	20	080	21
4,000	090₄	17	080	20
5,000	070	13	060	14
6,000	040	80	050	12
7,000	330	07	350	07
8,000	280	12	300	14
9,000	290	17	300	20
10,000	280	21	300	22
12,000	310	16	290	14
14,000	290	09	310	12
16,000	020	07	340	09
18,000	240	14	020	09
20,000	040	80	040	13
23,000	060	05	010	07
25,000	240	02	360	07
30,000	300	15	260	10
35,000	260	35		
40,000	270	25	270	30
45,000	280	29		
50,000	340	15	310	24
52,000			270	09
55,000	070	06		
60, 000	060	15	020	20
65,000	090	17		
69,000			120	10
70,000	090	12	100	07
73,000	090	57	060	13
75,000				
80,000	100	60	090	40
85, 000	090	57		
90, 000	090	57	090	72
95,000				
100,000			090	79
110,000			100	93
114,000			100	100

Wind data was taken by the Eniwetok weather station.
 Tropopause height was 59,000 ft MSL.
 The surface air pressure was 14.69 psi, the temperature 30.8°C, the dew point 73°F, and the relative humidity 63%.

Rise rate: 5000ft/hr

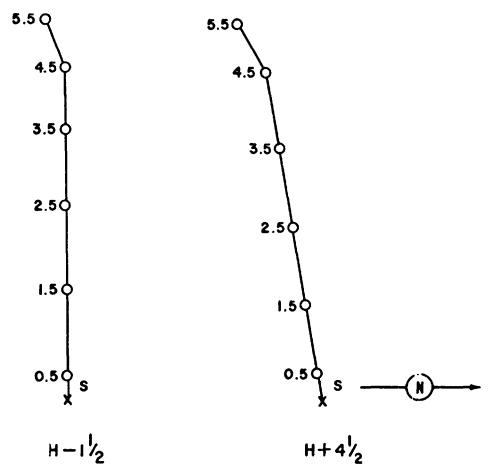


Figure 126. Hodographs for Operation HARDTACK I -

Wahoo

Holly

PPG Time GMT DATE: 21 May 1958 20 May 1958 TIME: 0630 1830

Sponsor: LASL

SITE: PPG - Eniwetok - West of Yvonne, 4,000 ft from the nearest edge of the island 11° 32' 38" N 162° 21' 22" E Site elevation: Sea level

HEIGHT OF BURST: 13.06 ft

TYPE OF BURST AND PLACEMENT: Surface burst from barge on water Water depth: 40 ft

CLOUD TOP HEIGHT: 15,000 ft MSL CLOUD BOTTOM HEIGHT: 7,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

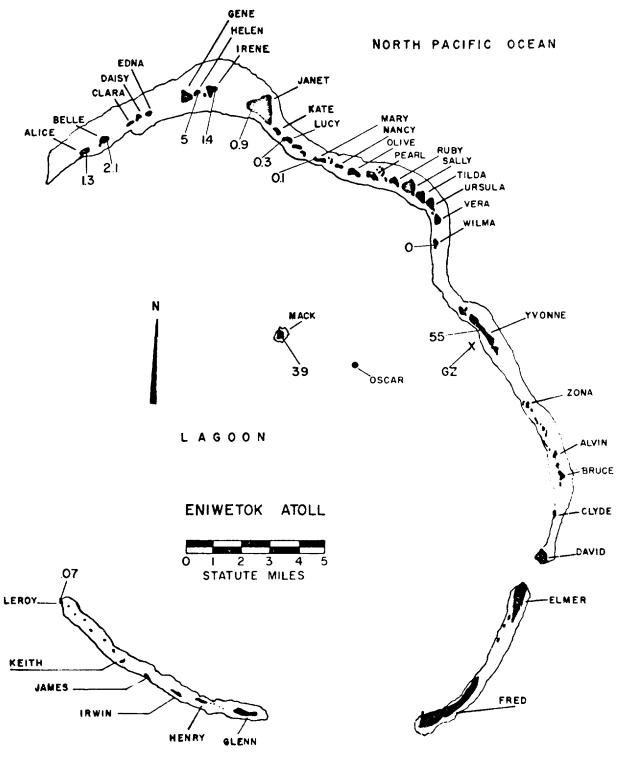
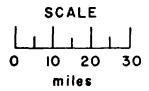


Figure 127 . Operation HARDTACK I - Holly. Island dose rates in r/hr at H+l hour.


TABLE 41 ENIWETOK WIND DATA FOR OPERATION HARDTACK I - HOLLY

Altitude	H-1/2 1	nour	H+5½ ho	urs	H+10 h	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	080	16	090	23	080	23
1,000	080	24	080	26	070	26
2,000	080	26	080	26	070	2l4
3,000	080	26	080	24	080	24
4,000	080	24	070	22	080	26
5,000	080	23	070	17	080	2lt
6,000	090	14	080	17	070	20
7,000	100	10	100	17	080	16
8,000	120	12	120	1)+	110	17
9,000	150	12	140	14	120	14
10,000	180	12	150	10	150	09
12,000	210	05	210	10	210	05
14,000	280	10	240	05	270	02
15,000	(270)	(07)	(200)	(05)	(300)	(05)
16,000	250	05	150	05	320	07
18,000	220	05	120	02	280	0 9
20,000	220	09	220	10	240	12
23,000	250	12	260	09	210	10
25,000	270	13	290	05	240	10
30,000	280	24	280	09	240	21
35,000			280	22	270	20
36,000	270	24				
40,000	220	22	200	30	190	39
45,000	210	38	210	43	21 0	32
50,000	230	20	270	17	270	18

^{1.} Numbers in parentheses are estimated values.

^{2.} Wind data was taken by the Eniwetok weather station.

Tropopause height was 52,000 ft MSL.
 The surface air pressure was 14.65 psi, the temperature 27°C, the dew point 75°F, and the relative humidity 75%.

Rise rate: 5000 ft/hr

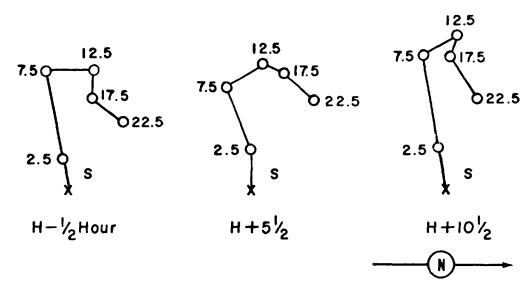


Figure 128. Hodographs for Operation HARDTACK I -

Holly.

Nutmeg

PPG Time GMT

DATE: 22 May 1958 21 May 1958

TIME: 0920 2120

Sponsor: UCRL

SITE: PPG - Bikini - West end Tare

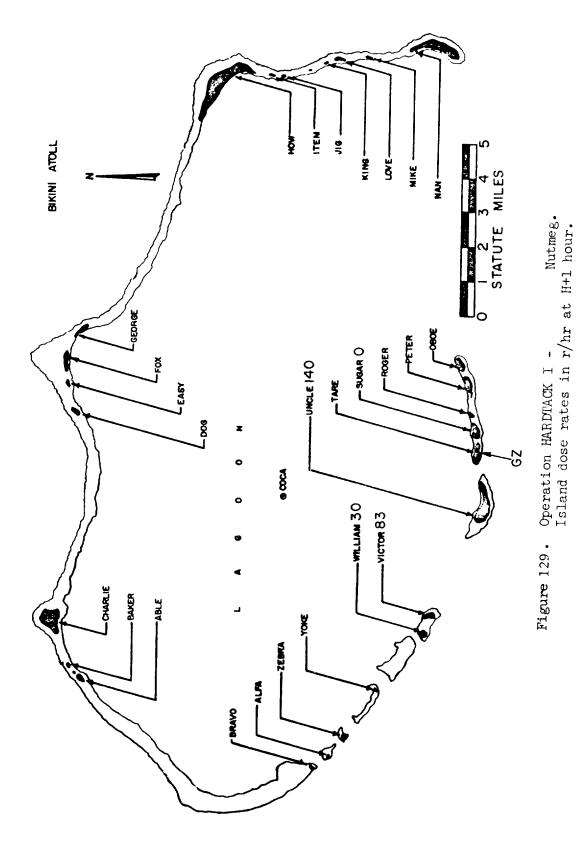
11° 29' 46" N 165° 22' 15" E

Site elevation: Sea level

HEIGHT OF BURST: 12.11 ft

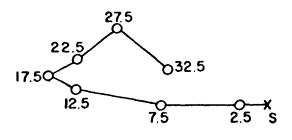
TYPE OF BURST AND PIACEMENT:

Surface burst from barge on

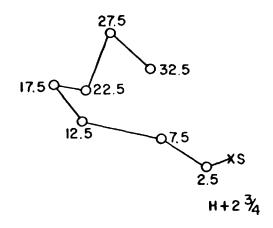

water

CLOUD TOP HEIGHT: 20,000 ft MSL

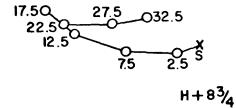
CLOUD BOTTOM HEIGHT: NM


REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1\cdot 2}$ decay approximation was used to correct the H+4 hour doserate readings to H+1 hour.



Altitude	H-hou	r	H+23 ho	urs	II+8₹ hou	rs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
			- 0 -		- 0	,
Surface	090	16	080	16	080	14
1,000	090	16	070	18	070	14
2,000	090	15	070	16	080	15
3,000	090	18	080	18	080	14
4,000	090	18	090	15	090	09
5,000	090	16	120	14	090	12
6,000	100	17	110	17	110	09
7,000	090	18	100	20	110	14
8,000	070	18	080	20	080	14
9,000	090	18	090	23	090	14
10,000	100	17	100	20	110	14
12,000	080	10	130	16	120	Ţħ
14,000	120	10	150	12	140	14
15,000	(110)	(12)	(140)	(12)	(130)	(09)
16,000	110	12	120	10	120	06
18,000	220	12	340	10	070	07
20,000	240	08	280	08	310	05
23,000	210	09	190	07	320	07
25,000	230	06	200	15	270	12
30,000	310	24	310	14	250	09
33,000					220	16
34,000	300	21				
35,000			260	16		
40,000	200	35	200	24	240	14
45,000	250	23			290	14
50,000	320	10	310	07	200	02
55,000			ō8o	07	040	02
57,000	080	07				
60,000	200	06	160	06	250	07
64,000					080	07
65,000	090	09	120	08		
70,000	110	12	110	08	080	08
72,000					050	ŏ8
75,000	080	25				
80,000	090	36	090	35	090	37
82,000		JQ	090	38		J
83,000					090	22
85,000	090	52				£.C
0),000	030) =		_ _		


- Numbers in parentheses are estimated values.
 Wind data was taken on board ship located within 30 nautical miles of the Tower at Nan Island, Bikini Atoll.
- 3. Tropopause height was 54,000 ft MSL.
- 4. The surface air pressure was 14.68 psi, the temperature 27.4°C, the dew point 72.5°F, and the relative humidity 76%.

H-Hour

Rise rate: 5000 ft/hr

Figure 130 . Hodographs for Operation HARDTACK I -

Nutmeg.

OPERATION HARDTACK I - Yellowwood

26 May 1958 26 May 1958 DATE:

TIME: 1400 0200 Sponsor: LASL

PPG - Eniwetok - SW of SITE:

> Janet 5,000 ft 11° 39' 37" N 162° 13' 31" E

Site elevation: Sea level

Water depth: 75 ft

HEIGHT OF BURST: 10.52 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from barge on water

CLOUD TOP HEIGHT: 50,000 ft MSL CLOUD BOTTOM HEIGHT: 30,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

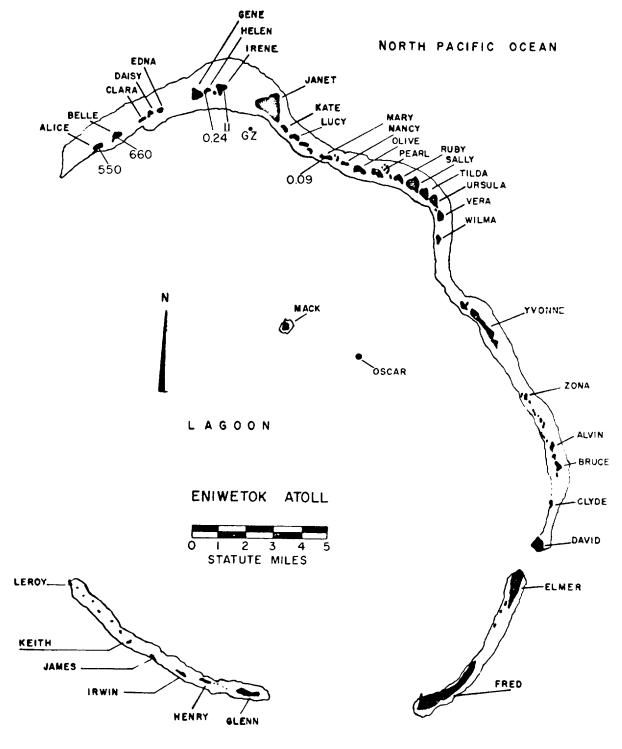


Figure 131. Operation HARDTACK I - Yellowwood. Island dose rates in r/hr at H+l hour.

TABLE 43 ENIWETOK WIND DATA FOR OPERATION HARDTACK I -

YELLOWWCOD

Altitude	H-hou	r	H+4 hours		H+10 hc	nirs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
		•			•	
Surface	090	14	070	18	080	15
1,000	090	16	080	20	080	18
2,000	090	16	080	17	080	18
3,000	090	18	080	17	090	18
4,000	080	17	090	15	100	16
5,000	080	16	090	12	100	12
6,000	070	13	080	09	100	12
7,000	060	13	070	09	090	12
8,000	050	09	070	12	090	15
9,000	050	10	070	12	090	15
10,000	050	08	060	13	090	09
12,000	040	12	050	14	030	12
14,000	050	.07	020	09	360	12
15,000	(060)	(07)	(030)	(80)	(360)	(08)
16,000	070	07	040	07	350	06
18,000	o 6 0	20	060	12	100	06
20, 000	070	30	o <i>6</i> 0	J.††	090	09
23,000	090	18	080	18	080	20
25,000	100	22	090	18	090	16
30,000	080	29	070	23	070	29
35,000	110	30	090	23	050	23
40,000	070	31	080	36	090	30
45,000	080	32	090	29	080	32
50,0 00	090	24	090	17	090	23
55,000	050	24	050	32	050	24
60, ∞0	070	23	060	20	030	24
65,00 0	060	09	050	16	080	21
70,000	090	07	100	23	080	21.
75,000	080	43	100	38	110	35
80, 000	100	49	100	48	090	55
85,00 0	100	51	080	59	090	60
90,000	100	57	090	54	090	61
95,000	100	63	090	53		
100,000	090	76	090	79		
1.5,000	080	86	090	94		
110,000	080	79	090	109		
115,000	100	105	090	105		
120,000	110	112	100	92		
122,000			100	90		
123,000	110	114				

^{1.} Numbers in parentheses are estimated values.

Wind data was taken by the Eniwetok weather station.
 Tropopause height was 55,000 ft MSL.
 The surface air pressure was 14.66 psi, the temperature 30.60C, the dew point 73°F, and the relative humidity 63%.

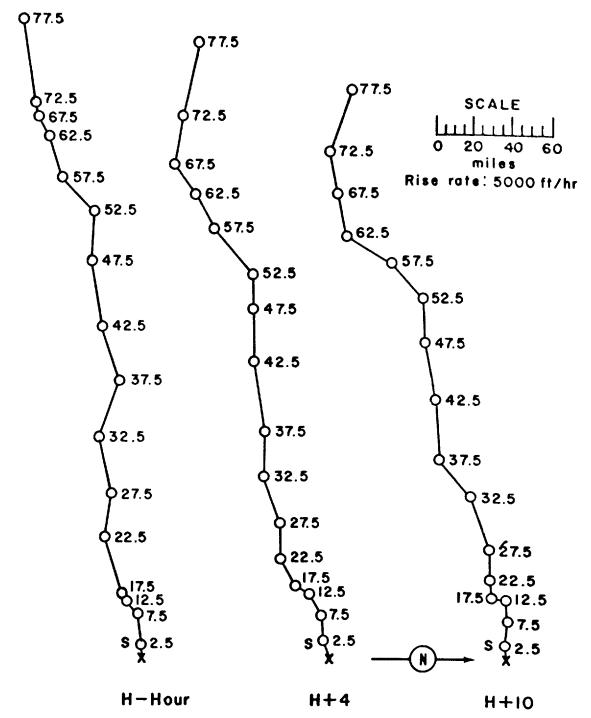


Figure 132. Hodographs for Operation HARDTACK I -

Yellowwood.

Magnolia

PPG Time GMT

DATE: 27 May 1958 26 May 1958

TIME: 0600 1800

Sponsor: LASL

SITE: PPG - Eniwetok - SW of Yvonne, 3,000 ft from

the nearest edge of the

island

11° 32' 34" N 162° 21' 14" E

Site elevation: Sea level

HEIGHT OF BURST: 13.88 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 44,000 rt MCL CLOUD BOTICM HEIGHT: 15,000 ft MCL

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t^{-1.2} decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

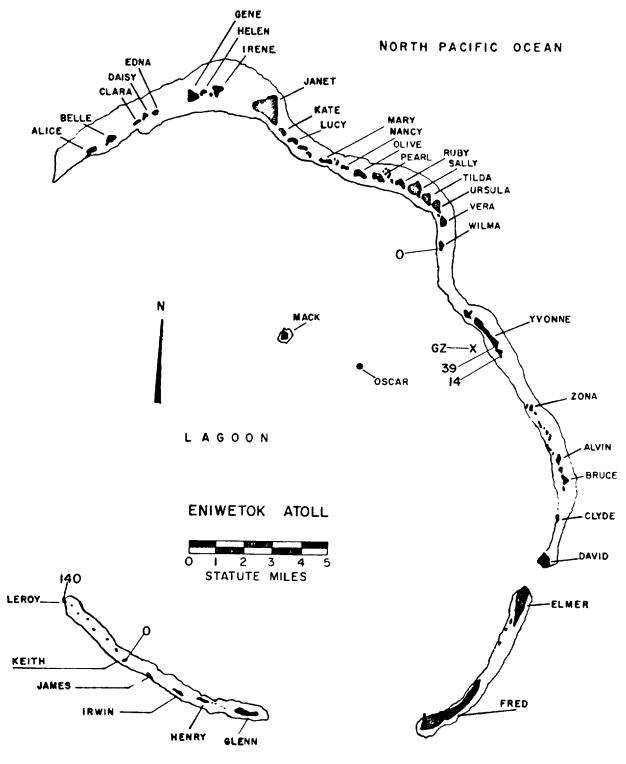


Figure 133. Operation HARDTACK I - Magnolia. Island dose rates in r/hr at H+1 hour.

TABLE 44 ENIWETOK WIND DATA FOR OPERATION HARDFACK I -

MAGNOL IA

Altitude	H-hour		H+6 hours		H+11 hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	090	16	110	16	090	12
1,000	080	14	100	16	080	14
2,000	080	14	100	14	100	09
3,000	090	14	100	10	080	09
4,000	100	15	100	09	090	07
5,000	120	10	090	09	090	80
6,000	120	07	070	07	090	06
7,000	080	05	070	07	060	03
8,000	070	08	070	09	020	06
9,000	070	09	060	09	040	06
10,000	070	09	060	09	030	03
12,000	060	09	140	03	260	03
14,000	040	12	110	06	150	05
15,000	(040)	(14)	(110)	(07)	(110)	(05)
16,000	`050	`05´	100	`09	`080´	05
18,000	100	09	190	09	080	09
20,000	130	09	090	12	070	12
23,000	090	16	070	14	050	15
25,000	080	12	060	14	020	13
30,000	060	31	060	31	030	21
35,000	060	25	040	20	030	23
40,000	080	24	060	30	050	25
45,000	090	39	060	ž2	020	18
50,000	040	24	020	30	350	16
55,000	050	23	050	35	050	28
60,000	050	31	050	25	080	20
65,000	100	15	070	23	100	16
70,000	080	18	110	22	090	21
75,000	090	37	110	32	090	24
80,000	090	49	100	52	100	48
85,000	090	71	100	64	090	61
90,000	090	78	100	64	090	69
91,000	090	78				
95,000			100	<i>6</i> 8	იგ 0	71
100,000			100	69	080	64
105,000			100	8ó		
110,000			100	99		
113,000			100	101		

^{1.} Numbers in parentheses are estimated values.

Wind data was taken by the Eniwetok weather station.
 Tropopause height was 54,000 ft MSL.
 The surface air pressure was 14.65 psi, the temperature 26.8°C, the dew point 72°F, and the relative humidity 76%.

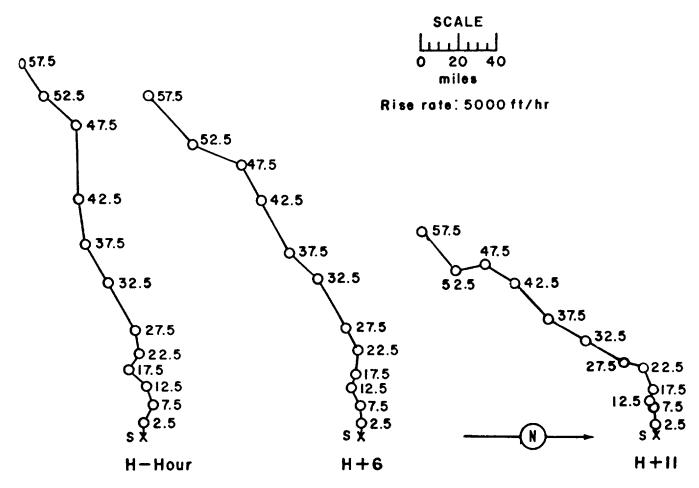


Figure 134. Hodographs for Operation HARDTACK I -

Magnolia.

Tobacco

<u>PPG Time</u> <u>GMT</u> <u>DATE:</u> 30 May 1958 30 May 1958 <u>TIME:</u> 1415 0215 Sponsor: LASL

SITE: PPG - Eniwetok - 3,000 ft

NW of Janet

11° 39' 48" N

162° 13' 48" E

Site elevation: Sea level

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 18,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1.2}$ decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

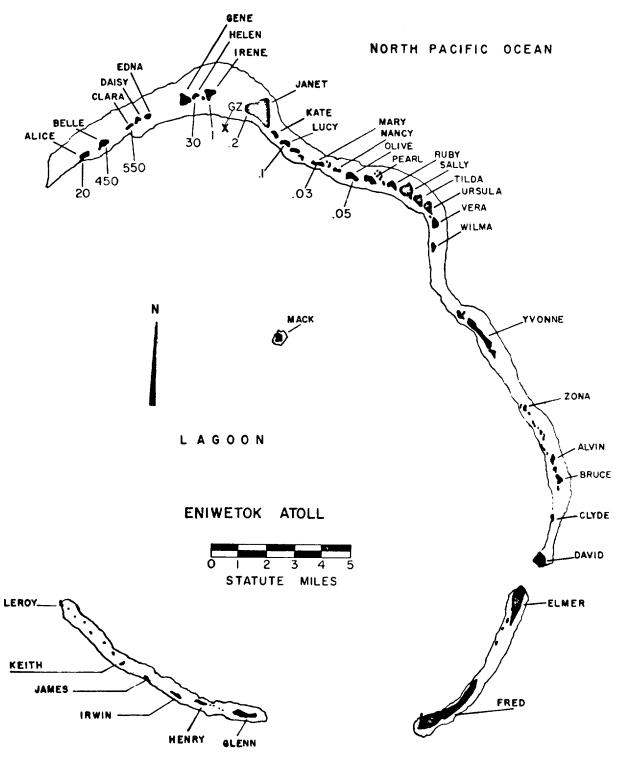


Figure 135. Operation HARDTACK I - Tobacco. Island dose rates in r/hr at H+l hour.

TABLE 45 ENIWETOK WIND DATA FOR OPERATION HARDTACK I -

TOBACCO

Altitude	H-1 h	our	H+3∄ hc	urs		ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
	-0-	- 1	-0-			-0
Surface	080	14	080	23	120	28
1,000	080	24	080	26	090	24
2,000	080	36	080	29	100	28
3,000	090	51	090	59	110	30
4,000	090	16	090	26	120	25
5,000	090	14	100	55	130	22
6,000	090	17	100	22	140	22
7,000	090	22	110	21	140	2€
8,000	100	21	110	16	130	29
9,000	110	18	110	16	120	32
10,000	1 3 0	20	110	20	110	33
12,000	140	14	120	09	100	29
14,000	130	10	130	07	120	19
15,000	(130)	(11)	(130)	(06)	(120)	(13)
16,000	140	13	130	05	120	09
18,000	120	12	140	02	110	10
20,000	120	12	110	02	110	17
23,000	130	14	140	05	120	18
25,000	120	12	130	07	150	16
30,000	190	07	200	08	210	07
35,000	240	15	230	12	210	09
40,000	200	17	220	14	210	26
45,000	200	17	220	2 5	230	26
50,000	230	17	230	18	270	12
55,000	290	07	220	05	240	08
60,000	070	o <u>8</u>	070	13	100	18
65,000	130	24	140	18	160	12
70,000	110	17	070	23	070	24
75,000	090	35	090	37	090	38
80,000	090	<u>4</u> 8	100	5 5	090	57
85,000	100	68	100	<u>6</u> 8	090	69
90,000	100	69	100	69	090	71
94,000					090	71
95,000	100	71	090	69	*==	
100,000	100	77	090	69		
105,000	100	72	100	76		
110,000	090	77				
118,000	090	95				
,	-) -					

Numbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.

Tropopause height was 55,000 ft MSL.
 The surface air pressure was 14.65 psi, the temperature 28.9°C, the dew point 75°F, and the relative humidity 74%.

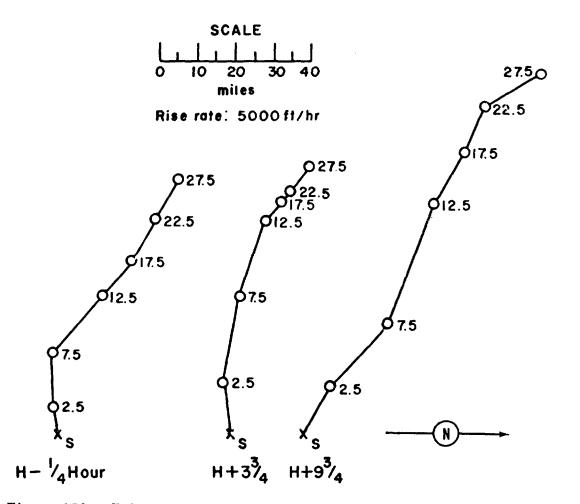


Figure 136. Hodographs for Operation HARDTACK I -

Tobacco.

Sycamore

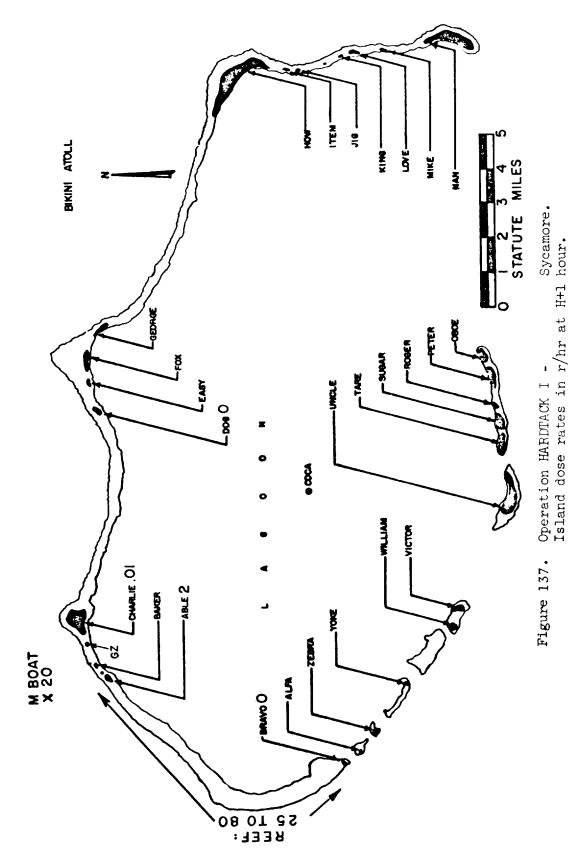
PPG Time CMT

DATE: 31 May 1958 31 May 1958

TIME: 1500 0300

Sponsor: UCRL

SITE: PPG - Bikini - SW of Charlie 4,000 ft from the nearest edge of the island 11° 41' 27" N 165° 16' 25" E
Site elevation: Sea level


HEIGHT OF BURST: 11.64 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 46,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1\cdot 2}$ decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

Altitude	H-hou			urs	H+9 hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	090	12	100	17	070	21
1,000	110	22	090	21	080	22
2,000	100	23	090	22	080	24
3,000	110	28	090	24	080	25
4,000	110	24	100	23	090	23
5,000	110	18	110	22	080	18
6,000	110	14	110	18	090	15
7,000	100	17	110	18	100	15
8,000	100	07	100	18	100	15
9,000	110	14	100	17	090	20
10,000	120	14	110	16	110	14
12,000	120	16	110	16	130	16
14,000	080	15	090	13	100	17
15,000	(080)	(13)	(070)	(13)	(090)	(15)
16,000	090	12	050	12	`080	14
18,000	120	13	100	09	120	07
20,000	130	18	140	12	100	02
23,000	160	10	130	17	090	08
25,000	140	23	100	14	010	16
30,000	010	09	040	13	060	13
33,000	270	06				
34,000					120	10
35,0 00	(260)	(12)	28 0	17	(140)	(13)
40,0 00	220	26	230	23	230	23
45,000	230	24	(255)	(17)	300	25
50,000	280	18	280	12	270	08
53,000			080	06		
55,000	(150)	(30)	(080)	(10)	060	16
57,000	100	35				
60, 000	120	26	120	22	100	20
65, 000	080	16				
66,000			060	.30		
70,000	100	24	090	31	090	29
75,000	090	38				
80,000	100	55	100	53	090	5 3
81,000	100	58				
85, 000					090	41
90,000			090	59	080	75
			000			
91,000 94,000			090	59	080	 68

Numbers in parentheses are estimated values.
 Wind data was taken on board ship located within 30 nautical miles of the Tower on Nan Island, Bikini Atoll.

Tropopause height was 55,000 ft MSL.

The surface air pressure was 14.62 psi, the temperature 28.6° C, the dew point 74° F and the relative humidity 73%.

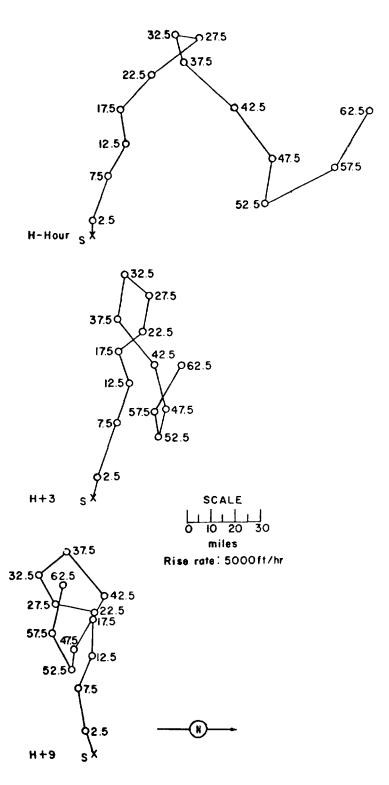


Figure 138. Hodographs for Operation HARDTACK I -

Sycamore.

Rose

PPG Time CMT 3 June 1958 2 June 1958 DATE: TIME:

0645 1845 Sponsor: LASL

SITE: PPG - Eniwetok - SW of Yvonne 4,000 ft from the nearest edge of the island

Site elevation: Sea level

HEIGHT OF BURST: 15.43 ft

TYPE OF BURST AND PLACEMENT: Surface burst from barge on water

CLOUD TOP HEIGHT: 17,000 ft MSL CLOUD BOTTOM HEIGHT: 5,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1.2}$ decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

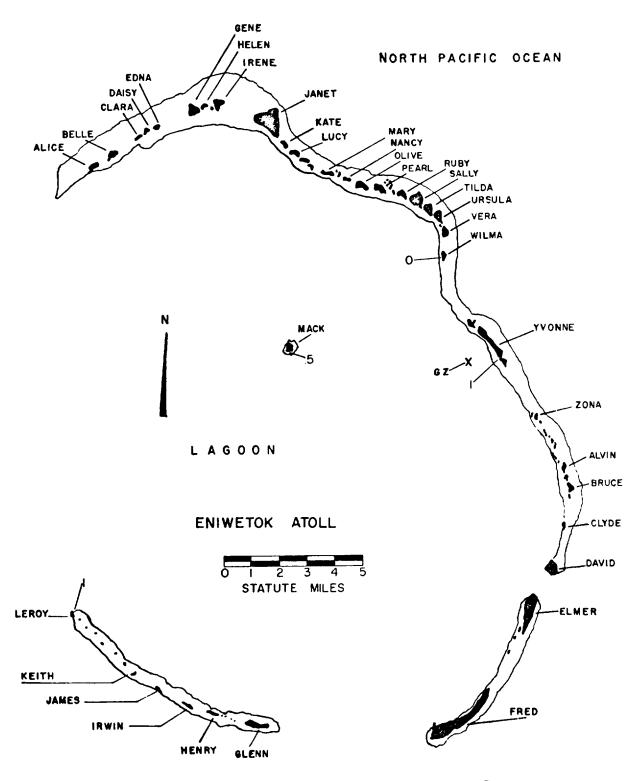


Figure 139. Operation HARDTACK I - Rose.
Island dose rates in r/hr at H+l hour.

Altitude	Altitude H-1 h		H+51 1	lours
(MSL)	Dir	Epeed	Dir	Upped
feet	degrees	mpin	degrees	mph
Surface	080	25	070	23
1,000	070	26	060	22
2,000	080	26	070	24
3,000	060	24	070	25
4,000	080	21	080	20
5,000	080	20	090	17
6 , 000	090	22	080	21
7,000	080	28	070	24
8,000	070	29	060	22
9,000	070	25	060	18
10,000	070	23	080	14
12,000	070	10	130	12
14,000	060	02	110	09
15,000	(070)	(05)	(110)	(08)
16,000	080	07	120	07
18,000	110	12	120	13
20,000	130	09	130	17
23,000	100	22	100	15
2 5,000	100	24	100	23
30,000	090	15	090	51
35,000	140	09	090	15
40,000	180	29	130	24
45,000	160	21	160	31
50,000	240	07	090	09
55,000	060	24	090	21
60,000	100	28	120	20
65,000	050	22	060	23
70,000	090	33	100	38
75,000		,	110	35
77,000	110	45		
80,000			110	43
85,000			090	42
90,000			090	54
95,000			100	65
100,000			100	76
105,000			100	84
110,000			080	70 70
114,000			110	76

Numbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.

Tropopause height was 57,000 ft MSL.
 The surface air pressure was 14.62 psi, the temperature 27.2°C, the dew point 74°F, and the relative humidity 79%.

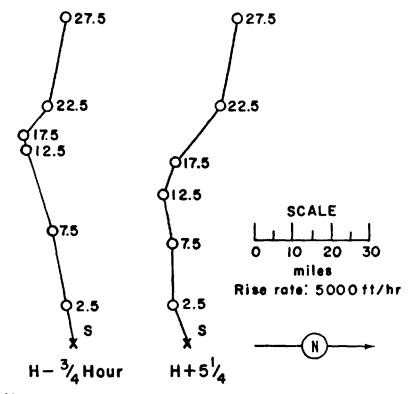


Figure 140 . Hodographs for Operation HARDTACK I -

Rose.

- Umbrella

PPG Time CMT9 June 1958 8 June 1958 DATE: TIME: 1115 2315

Sponsor: DOD

PPG - Eniwetok - NNE of SITE:

Henry 11° 22'

51" 162° 13' 09" E

Site elevation: Sea level

Water depth: 150 ft

HEIGHT OF BURST: 150 ft underwater

TYPE OF BURST AND PLACEMENT: Sub-surface burst on lagoon bottom

REMARKS:

The pattern was obtained from a total of about 80 points which is really too few to place much reliance on the rather pronounced lobing of the downwind contours. "Nearly all of the total gamma dose occurred within 25 minutes after zero time and was due to the passage of airborne radioactive material. Gamma doses in excess of 100r occurred within the first 15 minutes at downwind distances less than 14,000 feet. The residual field due to deposited radioactive material was relatively insignificant, although radioactive foam may represent a radiological hazard."

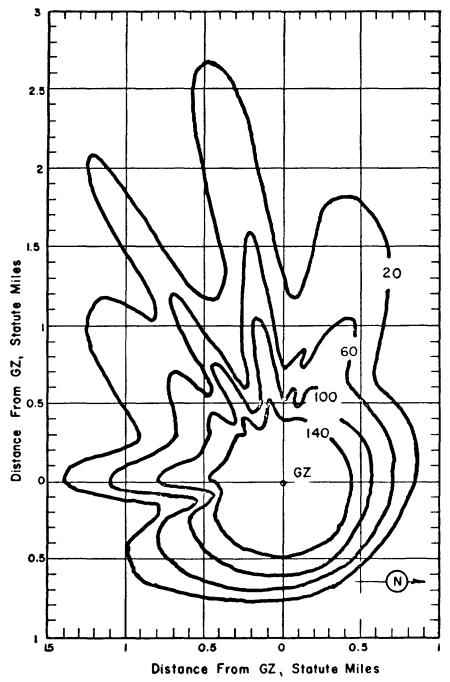


Figure 141. Operation HARDTACK I - Umbrella. Idealized rate contours in r. (Contours represent cumulative dose to 6 hours.)

TABLE 48 ENIWETOK WIND DATA FOR OPERATION HARDTACK I -

Altitude	H+3 ho	our	H+6% h	ours
(MSL)	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph
Cumfooo	060	03	070	02
Surface		23	070	23
1,000	050	26 21:		
2,000	060	24		
3,000	070	24		
4,000	080	25		
5,000	080	28		
6,000	090	28		
7,000	100	21		
8,000	100	17		
9,000	100	20		
10,000	100	24		
12,000	110	18		
14,000	120	15	070	09
16,000	100	09	060	15
18,000	160	05	c80	07
20,000	070	07	190	05
23,000	090	02	030	09
25,0 00	080	06	360	05
30,000	050	06	350	17
35,000	330	14	250	15
40,000	260	14	270	1 5
45,000	270	15	200	29
50,000	280	10	500	20
55,000	160	08	150	06
60,000	140	07	040	08
<i>6</i> 5,000	090	24	120	22
70,000	100	20	080	16
75,000	100	45		
80,000	100	57	090	57
85,000	090	57		
90,000	090	62	090	63
95,000	090	63		
99,000			090	56
100,000	090	60		
105,000	090	58		

NOTES:

1. Wind data was taken by the Eniwetok weather station.
2. Tropopause height was 54,000 ft MSL.

Tropopause height was 14.66 psi, the temperate 3. The surface air pressure was 14.66 psi, the temperature 30°C, the dew point 72°F, and the relative humidity 63%.

Figure 142. Hodograph for Operation HARDTACK I -

Umbrella.

Maple

PPG Time GMT

DATE: 11 June 1958 10 June 1958

TIME: 0530 1730

Sponsor: UCRL

SITE: PPG - Bikini - South of

Fox

11° 41' 14" N 165° 24' 54" E

Site elevation: Sea level

HEIGHT OF BURST: 11.58 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 40,000 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1.2}$ decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

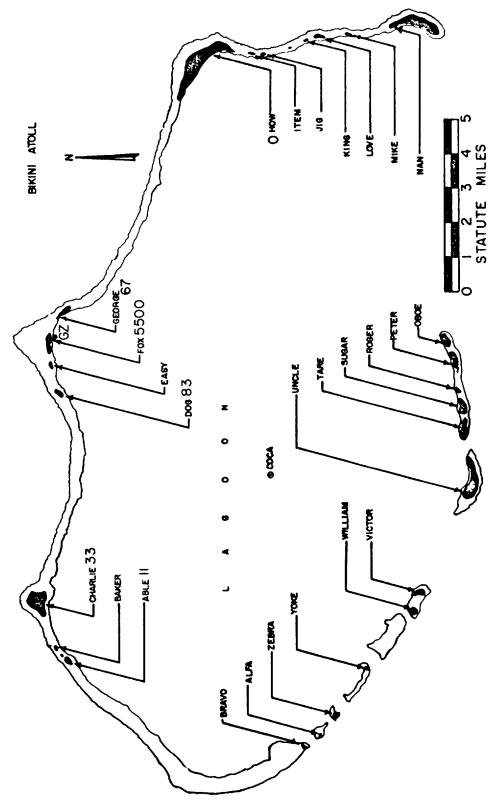


Figure 143. Operation HARDTACK I - in r/hr at H+1 hour.

Maple. Island dose rates

TABLE 49 BIKINI WIND DATA FOR OPERATION HARDTACK I -

MAPLE

Altitude	$H+\frac{1}{2}h$	our				H+12! hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed	
feet	degrees	mph	degrees	mph	degrees	mph	
	_						
Surface	080	25	040	25	050	21	
1,000	080	23	070	22	070	23	
2,0 00	080	24	070	20	070	23	
3,000	080	23	080	17	080	21	
4,000	100	55	090	14	090	20	
5 ,0 00	110	22	120	17	100	50	
6 ,0 00	120	22	140	20	110	16	
7,000	130	18	150	18	100	13	
8,000	140	20	150	18	110	09	
9,000	130	20	140	16	110	12	
10,000	130	18	130	20	110	14	
12,000	100	24	120	20	120	13	
14,000	080	21	140	24	120	18	
15,000	(080)	(55)	(140)	(21)	(130)	(20)	
16,000	080	24	140	18	130	20	
18,000	140	29	120	24	150	13	
20,000	140	28	130	26	130	15	
23,000	130	21	140	15	120	20	
25,000	190	10	190	80	330	18	
30,000	270	20	280	09	280	18	
35,000	250	38	(285)	(17)	(285)	(17)	
40,000	270	33	290	25 (24)	290 250	17 26	
45,000	310	24 20	(315) 340		3 50	26 24	
50,000	330	20	340	23	350	24	
54,000	070 (080)	03 (06)	(350)	(06)	(250)	(07)	
55,000	(000)	(00)		02	230	07	
56,000 60,000	100	14	350 130	13	230 360	08	
63,000	100	<u></u>	130	7.2	100	22	
	070	33			100	~ ~ ~	
65,000 70,000	090	33 21	090	2 5	080	24	
75,000	090	32	090				
80,000	090	58	090	56	090	60	
83,000	090) U)	100	61	
84,000			090	56	100	<u>-</u> -	
85,000	090	6 9		, o		- -	
90,000	090	79					
50 ,000	030	17	 -				
							

- NOTES:

 1. Numbers in parentheses are estimated values.
 2. Wind data was taken on board ship located within 30 nautical miles of the Tower at Nan, Bikini Atoll.

 - Tropopause height was 53,000 ft MSL.
 The surface air pressure was 14.66 psi, the temperature 27.0°C, the dew point 74°F, and the relative humidity 81%.

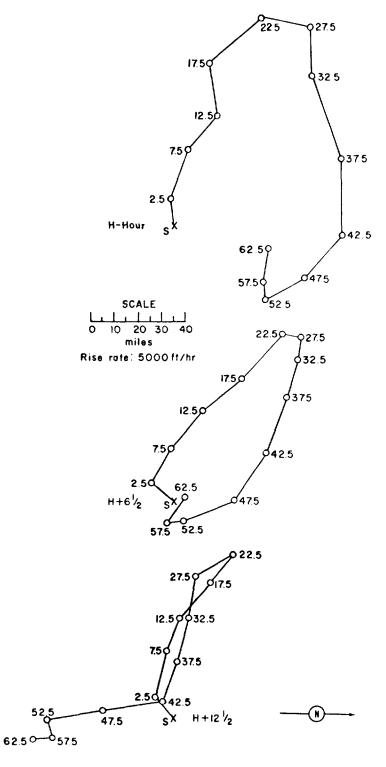


Figure 144. Hodographs for Operation HARDTACK I -

Maple.

Aspen

 PPG Time
 GMT

 DATE:
 15 June 1958
 14 June 1958

 TIME:
 0530
 1730

Sponsor: UCRL

SITE: PPG - Bikini - SW of Charlie 4,000 ft from the island
11° 41' 27" N
165° 16' 24" E
Site elevation: Sea level

HEIGHT OF BURST: 10.82 ft

CLOUD TOP HEIGHT: 48,600 ft CLOUD BOTTOM HEIGHT: NM

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1\cdot 2}$ decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

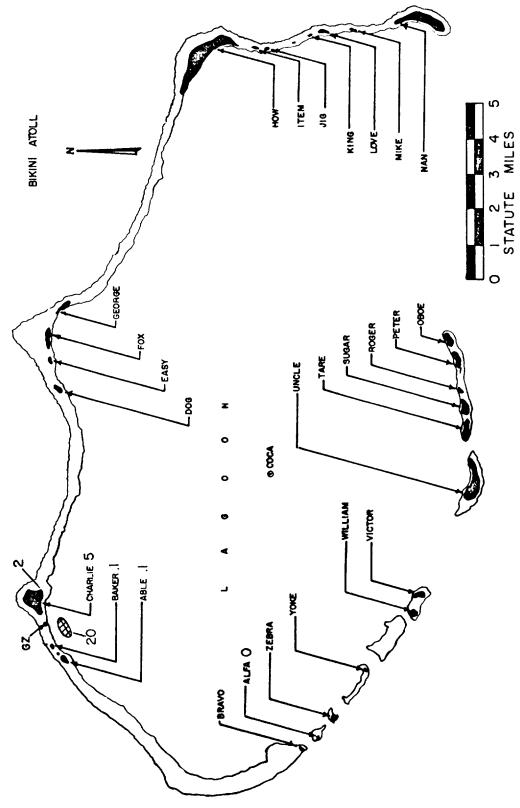


Figure 145. Operation HARDTACK - Aspen. Island dose rates in r/hr at H+l hour.

TABLE 50 BIKINI WIND DATA FOR OPERATION HARDTACK I -

ASPEN

Altitude	$H^{+\frac{1}{2}}$ hov	ır	H+9½ hours		H+12; hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
			_		_	
Surface	050	21	060	21	060	23
1,000	070	22	060	22	070	24
2,000	080	21	060	22	070	24
3,000	090	21	070	22	070	22
4,000	090	21	090	24	070	24
5,000	090	20	090	2 5	070	24
6,000	100	22			090	22
7,000	110	22			090	12
8,000	110	22			080	23
9,000	120	23	100	22	080	21
10,000	110	14	100	22	080	17
12,000	110	16	100	13	090	17
14,000	120	10	110	15	090	15
15,000	(110)	(12)	(110)	(16)	(090)	(16)
16,000	110	13	110	17	090	18
18,000	120	13	110	15	090	17
20,000	120	13	120	18	090	17
23,000	140	21	120	17	100	15
25,000	150	23	130	21	120	18
30,000	160	26	140	23	130	23
35,000	170	29	(140)	(26)	(150)	(24)
37,000			140	2 8	170	
40,000	150	26	200	3 3	170	25), 6
44,000	3.60				180	46
45,000	160	23	300		200	
50,000	190	30	190	28	200	20
54,000	100	14	(220)	(10)	(250)	(10)
55,000	(110)	(13)	(110)	(18)	(150)	(12)
56,000			070	3.5	110	10
57,000	150	00	070 060	15	100	~~
60,000	150	80	060	17	100	20
62,000	060	20			330	08
64,000			100	28	110	
66,000 70,000		00	120	38	060	
70,000	090	29	090 060	23	UOU	23
73,000			060	45	080	48
78,000						
89,000					110	57

 $[\]begin{array}{c} \underline{\text{NOTES:}} \\ \hline \textbf{1.} & \text{Numbers in parentheses are estimated values.} \end{array}$

^{2.} Wind data was taken on board ship located within 30 nautical miles of the Tower at Nan, Bikini Atoll.

<sup>Tropopause height was 52,000 ft MSL.
The surface air pressure was 14.66 psi, the temperature 27.4°C, the dew point 74°F, and the relative humidity 78%.</sup>

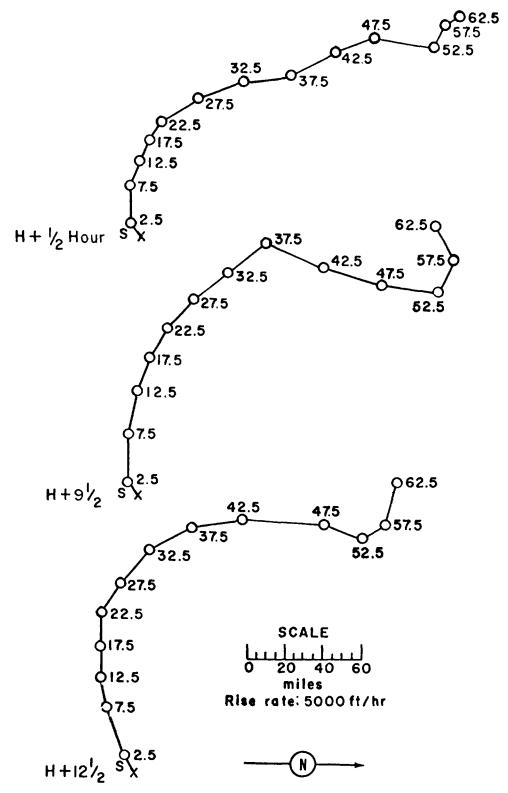


Figure 146. Hodographs for Operation HARDTACK I -

Aspen.

Walnut

PPG Time GMT

DATE: 15 Jun 1958 14 Jun 1958

TIME: 0630 1830

Sponsor: LASL

SITE: PPG - Eniwetok - 5,000 ft
SW of Janet
11° 39' 37" N
162° 13' 31" E
Site elevation: Sea level

HEIGHT OF BURST: 7.21 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge
on water

CLOUD TOP HEIGHT: 61,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

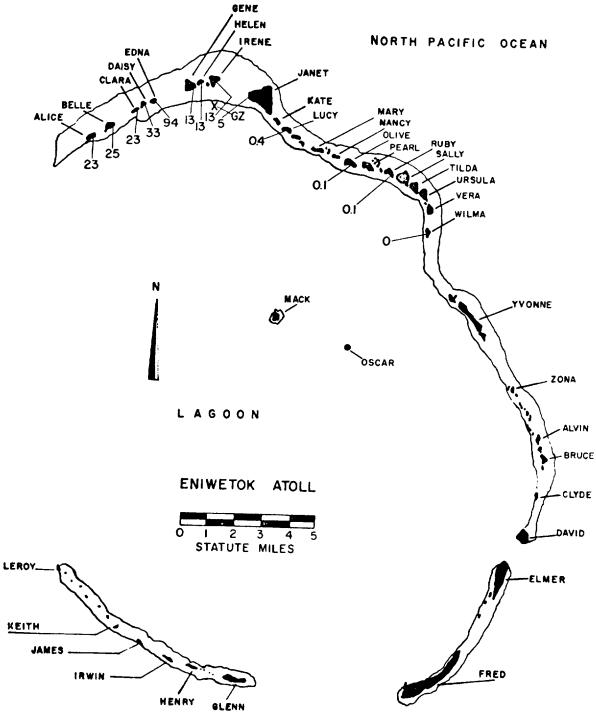


Figure 147. Operation HARDTACK I - Walnut. Island dose rates in r/hr at H+l hour.

TABLE 51 ENIWETOK WIND DATA FOR HARDTACK I-

WALNUT

Altitude	H-1 1	nour	11+5 = 1	nours	H+10; 1	nours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
		_			_	
Surface	070	16	100	17	080	17
1,000	070	22	070	25	060	17
2,000	080	22	080	20	070	21
3,000	090	22	100	20	080	21
4,000	090	22	100	20	090	21
5,000	090	50	100	18	090	24
6 , 000	090	17	110	21	090	26
7,000	090	15	110	21	090	24
8,000	090	15	110	17	100	20
9,000	100	15	110	14	100	16
10,000	100	15	100	1 5	120	17
12,000	090	15	120	10	090	12
14,000	110	17	110	80	110	07
15,000	(110)	(20)	(120)	(09)	(110)	(08)
16,000	110	23	130	12	110	09
18,000	110	23	120	22	120	15
20,000	110	21	130	20	120	14
23,000	150	14	110	07	130	14
25, 000	200	13	130	07	140	18
30,000	180	2 9	160	14	170	24
35,000	190	24	160	29	(170)	(26)
40,000	210	26	160	28	170	28
45,000	150	16	160	26	170	45
50,000	140	16	180	30	210	28
55 , 000	110	09	170	06		
57,000					050	15
60,000	080	20	080	17	090	.20
65,000	100	26	110	30	(090)	(23)
70,000	090	29	090	28	,080	28
75,000	090	48	090	39	(080)	(38)
80,000	090	57	090	53	090	59
85,000	090	69	090	69		
90,000	090	73	100	76	080	54
94,000	090	73				
95,000			100	77		
100,000			100	90	090	83
105,000			090	94	090	78

^{1.} Numbers in parentheses are estimated values.

Wind data was taken by the Eniwetok weather station.
 Tropopause height was 54,000 ft MSL.
 The surface air pressure was 14.66 psi, the temperature 27.1°C, the dew point 76°F, and the relative humidity 84%.

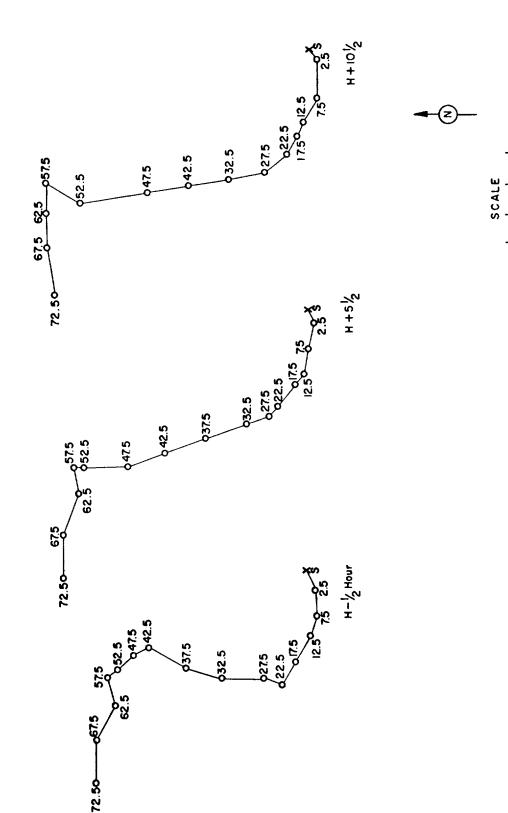


Figure 148. Hodographs for Operation HARDTACK I -

Rise rate: 5000ft/hr

Walnut.

Linden

PPG Time CMT

DATE: 18 Jun 1958 18 Jun 1958

TIME: 1500 0300

Sponsor: LASL

SITE: PPG - Eniwetok - West of Yvonne, 4,000 ft from the island 11° 32' 39" N 162° 21' 23" E

Site elevation: Sea level Water depth: 33 ft

HEIGHT OF BURST: 8.25 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 20,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1.2}$ decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

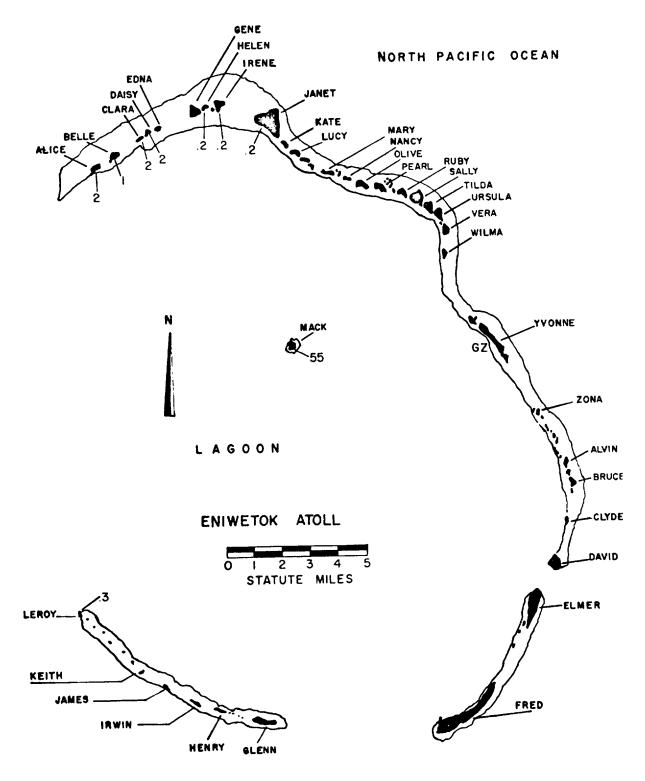


Figure 149. Operation HARDTACK I - Linden. Island dose rates in r/hr at H+l hour.

TABLE 52 ENIWETOK WIND DATA FOR OPERATION HARDTACK I - LINDEN

Altitude	H-hou	r	H+3 h	ours	II+9 ho	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	110	18	110	18	070	16
1,000	090	17	080	14		
2,000	100	14	080	15		
3,000	120	12	090	12		
4,000	120	12	110	09		
5,000	120	09	110	10		
6,000	120	09	110	08		
7,000	120	05	100	07		
8,000	120	05	100	05		
9,000	110	07	080	07		
10,000	100	15	090	09		
12,000	110	14	110	12		
14,000	140	12	120	09		
15,000	(130)	(14)	(120)	(12)	(120)	(14)
16,000	130	17	130	14	120	14
18,000	110	24	110	25	130	18
20,000	100	20	110	23	120	16
23,000	100	16	100	12	130	10
25,000	140	13	140	13	140	07
30,000	060	15	070	13	080	07
35,000	070	2 5			040	12
40,000	320	07	010	14	320	13
41,000			290	17		
45,000	340	13			340	22
50,000	030	07	010	07	060	07
55,000	120	15	140	13	200	14
60,000	100	16	090	09	090	23
65,0 00	090	37			090	26
70,000	100	38	100	33		
75,000	120	40	-~-			
80,000	100	48	100	52		
85,000	090	63				
90,000	090	69	090	74		
95,000	090	85				
100,000	100	110	100	95		
,				//		

NOTES:

1. Numbers in parentheses are estimated values.
2. Wind data was taken by the Eniwetok weather station.

Tropopause height was 54,000 ft MSL.
 The surface air pressure was 14.65 psi, the temperature 31.2°C, the dew point 77.50°F, and the relative humidity 71%.

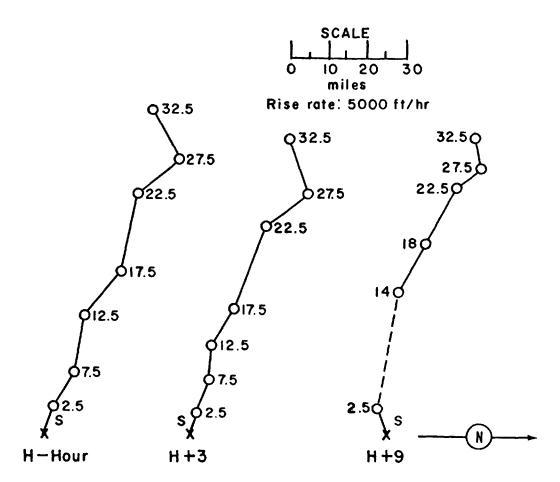


Figure 150. Hodographs for Operation HARUTACK I -

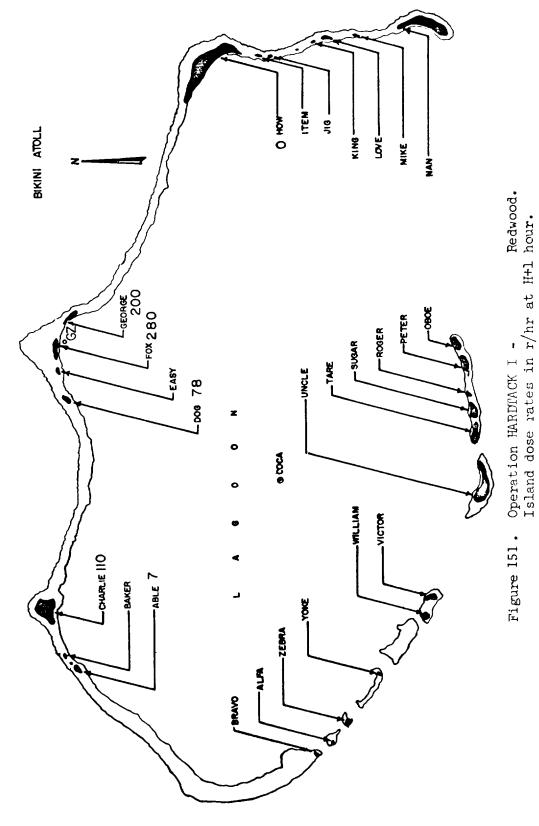
Linden.

- Redwood

<u>PPG Time GMT</u>
<u>DATE:</u> 28 Jun 1958 27 Jun 1958
TIME: **0**530 1730

Sponsor: UCRL

SITE: PPG - Bikini South of Fox 11° 41' 14" N 165° 24' 54" E
Site elevation: Sea level


HEIGHT OF BURST: 10.79 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge on water

CLOUD TOP HEIGHT: 51,000 ft MSL CLOUD BOTTOM HEIGHT: 28,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

Altitude	$H^{+\frac{1}{2}}$ ho	our	$\overline{H}+9^{\frac{1}{2}}$ ho	ours	H+12½ hc	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
	0570	00	000	-00	000	05
Surface	070	23	080	23	090	25
1,000	070	23	090	29	090	33
2,000	070	25	080	29	100	29
3,000	070	23	090	28	100	24
4,000	070	20	090	26	100	12
5,000	080	18	100	23	110	17
6,000	100	21	100	22	110	16
7,000	100	22	110	22	110	23
8,000	110	22	120	20	110	25
9,000	110	23	110	18	110	28
10,000	110	23	120	20	110	24
12,000	110	21	110	20	120	25
14,000	110	20	120	21	100	24
15,000	(110)	(18)	(110)	(21)	(100)	(25)
16,000	100	18	110	21	100	26
18,000	090	16	120	25	120	29
20,000	100	18	110	21	110	23
23,000	080	12	100	22	130	20
25,000	140	12	100	28	140	23
30,000	070	06			120	23
35,000	180	80			140	07
40,000	170	16			190	07
45,000	210	26			220	09
50,000	230	24			040	16
55,000	310	07			140	18
60,000	130	80			080	28
65,000					090	41
70,000					100	54
72,000					110	46

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was taken on board ship within 30 nautical miles of the tower at Nan Island, Bikini Atoll.
- 3. Tropopause height was 52,000 ft MSL.
 4. The surface air pressure was 14.65 psi, the temperature 27.3°C, the dew point 78.5°F, and the relative humidity 92%.

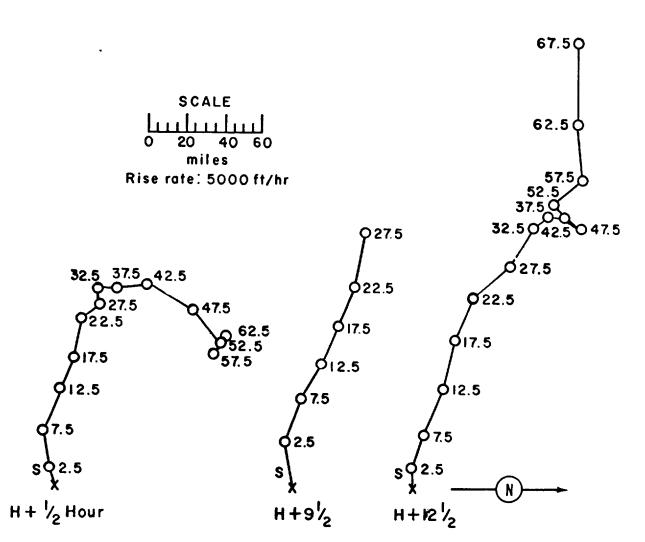


Figure 152. Hodographs for Operation HARDTACK I -

Redwood.

Elder

PPG Time

GMT

DATE: 28 June 1958 TIME: 0630

27 June 1958

1830

Sponsor: LASL

SITE: PPG - Eniwetok - SW of

Janet 4,000 ft to nearest edge of island

11° 39' 48" N 162° 13' 48" E

Site elevation: Sea level

HEIGHT OF BURST: 9.17 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from barge on

water.

CLOUD TOP HEIGHT: 50,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

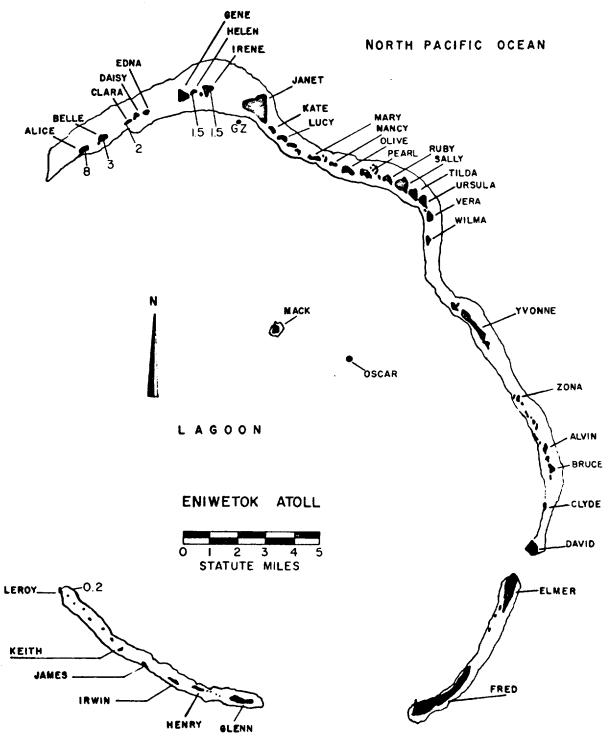


Figure 153. Operation HARDTACK I - Elder. Island dose rates in r/hr at H+l hour.

Altitude	$H-\frac{1}{2}$ hour		H+5½ ho	H+5½ hours		ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degroes	mph
Surface	080	24	090	17	100	16
1,000	070	26	070	23	100	26
2,000	070	26	090	24	1.00	26
3,000	080	24	100	24	100	26
4,000	090	22	100	22	100	26
5,000	090	22	100	5 ₁ t	100	26
6,000	100	22	110	28	100	26
7,000	120	23	110	23	100	26
8,000	130	21	110	22	100	26
9,000	130	22	100	2lt	100	30
10,000	120	20	110	26	100	31
12,000	090	20	100	22	100	26
14,000	090	18	100	22	100	26
15,000	(100)	(17)	(100)	(22)	(100)	(16)
16,000	110	16	100	22	100	06
18,000	120	13	120	22	080	33
20,000	110	1.6	120	22	(060)	(20)
23,000	110	16	120	17	100	18
25,000	090	15	100	14	110	23
30,000	230	16	180	21	140	28
34,000			160	38		
35,000	190	33	(160)	(37)	140	31
40,000	180	47	160	29	190	26
45,000	180	23	(220)	(21)	240	07
50,000	180	23	280	13	150	13
53,000			180	13		
55,000	120	13	(160)	(14)	270	30
60,000	100	26	100	18	110	23
65,000	100	28			090	47
70,000	060	46	100	48	090	56
75,000	100	47			090	56
80,000	090	61	090	62	090	61
85,000	090	67			090	74
90,000	090	93	100	87	090	8 7
95,0 00	090	90			090	90
100,000			100	105		
105,000			100	117		
110,000			100	107		
116,000			1.00	90		

^{1.} Numbers in parentheses are estimated values.

^{2.} Wind data was taken by the Eniwetok weather station.

^{3.} Tropopause height was 52,000 ft MSL.
4. The surface hir pressure was 14.63 psi, the temperature 27.4°C, the dew point 74°F, and the relative humidity 78%.

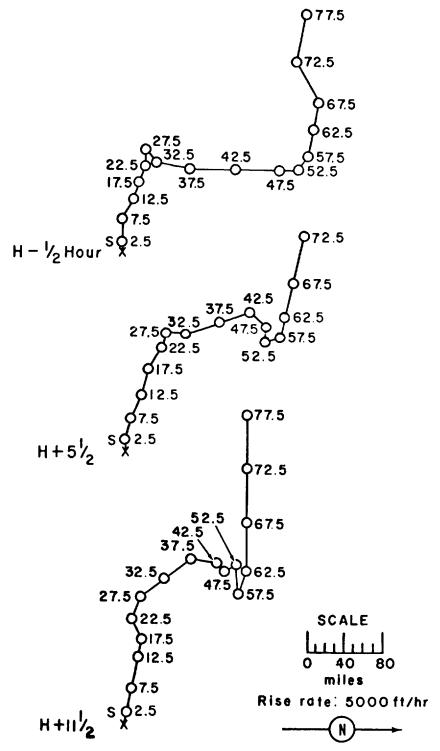


Figure 154. Hodographs for Operation HARDTACK I -

Elder.

Oak

PPG Time GMT

DATE: 29 June 1958 28 June 1958

TIME: 0730 1930

TOTAL YIELD: 8.9 Mt

FIREBALL DATA:

Time to 1st minimum: NM
Time to 2nd maximum: 2.98 sec
Radius at 2nd maximum: NM

CRATER DATA:

Diameter: 4,400 ft Depth: 183 ft Sponsor: LASL

SITE: PPG - Eniwetok - 3 mi
SW of Alice
11° 36' 28" N
162° 06' 28" E
Site elevation: Sea level
Water depth: 13 ft

HEIGHT OF BURST: 6.5 ft

TYPE OF BURST AND FLACEMENT:
Surface burst from parge on water

CLOUD TOP HEIGHT: 78,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at a desired spot, so that a ground reading could be obtained or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1\cdot 2}$ decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

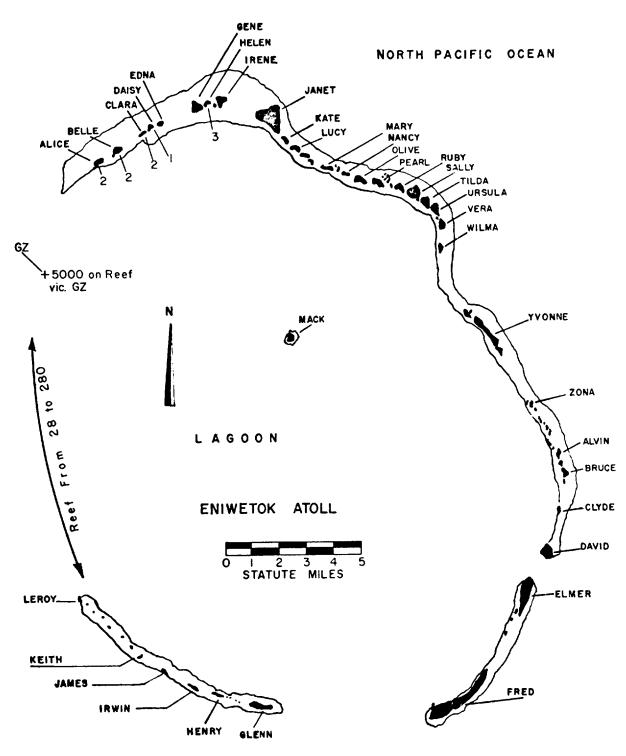


Figure 155. Operation HARDTACK I - Oak.
Island dose rates in r/hr at H+l hour.

Altitude	H+1 hour		H+4} hours		H+9½ hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	120	16	090	12	100	22
1,000	090	22	080	17	100	30
2,000	100	24	080	22	100	30
3,000	100	24	080	22	100	28
4,000	100	24	090	20	100	60
5,000	110	22	100	20	100	23
6,000	110	20	110	17	100	16
7,000	120	20	120	17	100	18
8,000	120	20	130	17	100	18
9,000	130	18	130	17	100	17
10,000	140	17	130	17	100	13
12,000	150	16	130	18	120	13
14,000	130	18	150	22	130	12
15,000	(130)	(17)	(150)	(21)	(130)	(09)
16,000	130	17	150	20	130	07
18,000	130	17	150	20	130	07
20,000	130	18	160	20	200	05
23,000	140	17	160	26	170	12
25,000	140	22	150	23	170	12
	140	16	140	20 20	190	09
30,000	140	10	140	16	160	10
35,000	120	20	110	16	100	16
40,000	060	14	110	10	100	
44,000		(14)	090	18	080	17
45,000	(070)	, ,				
50,000	090	13	160	21	140	08
55,000	(100)	(12)	070	80	040	12
57,000	110	12	080		080	
60,000				31		30
65,000			090	33	100	35
70,000			090	43	090	41
75,000			090	56	090	54
80,000			100	67	100	67
8 5,000			100	97	090	78
90, 000			090	72	090	84
91,000			090	73		
95,000					090	82
100,000					090	9 5
105,000					100	106
110,000					100	115
114,000					090	121

NOTES:

1. Numbers in parentheses are estimated values.
2. Wind data was taken by the Eniwetok weather station.
3. Tropopause height was 50,000 ft MSL.
4. The surface air pressure was 14.64 psi, the temperature 27.3°C, the dew point 76.5°F, and the relative humidity 87%.

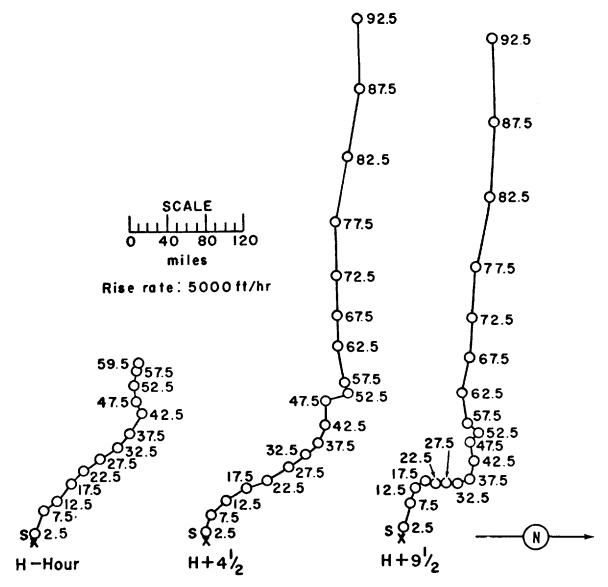


Figure 156. Hodographs for Operation HARDEACK I -

Oak.

Hickory

PPG Time GMT DATE: 29 June 1958 29 June 1958 TIME: 1200 2400

SITE: PPG - Bikini - Off west

end of Tare 11° 29' 46" 165° 22' 15" E

Sponsor: UCRL

Site elevation: Sea level

HEIGHT OF BURST: 12.11 ft

TYPE OF BURST AND PLACEMENT: Surface burst from barge on water

CLOUD TOP HEIGHT: 24,000 ft MSL CLOUD BOTTOM HEIGHT: 12,000 ft MSL

CRATER DATA: Not available

REMARKS:

Only individual island dose rates are available. These were obtained from helicopter surveys made by the Radiological Safety organization at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1.2}$ decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

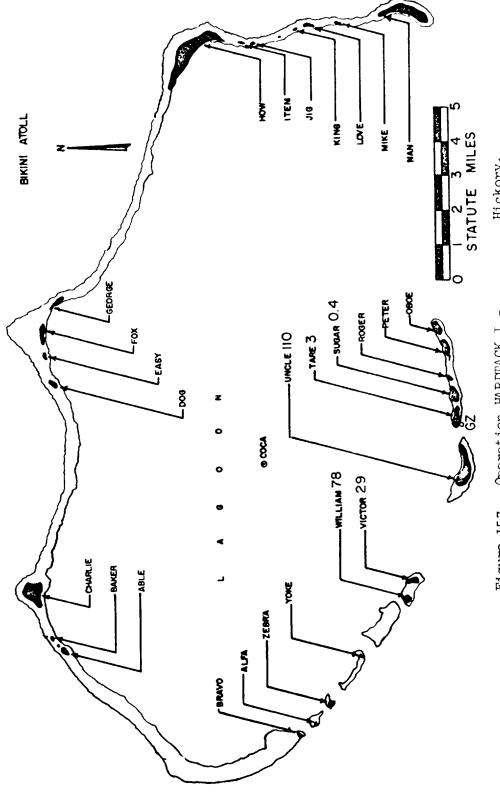


Figure 157. Operation HARDFACK I - Hickory. Island dose rates in r/hr at H+1 hour.

TABLE 56 BIKINI WIND DATA FOR OPERATION HARDTACK I - HICKORY

Altitude	H-hou	r	H+6 hc	urs	H+12 hours	
(MSI,)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	090	09	050	23	080	17
1,000	080	23	080	28	080	22
2,000	080	23	080	36	080	24
3,000	080	24	080	36	080	23
4,000	090	24	090	16	080	21
5,000	090	24	090	31	070	20
6,000	090	21	080	29	060	21
7,000	090	22	090	24	060	21
8,000	090	20	090	22	070	18
9,000	090	17	080	15	090	21
10,000	100	18	070	12	090	20
12,000	100	14	050	13	070	21
14,000	110	15	070	14	070	21
15,000	(100)	(17)	(0 70)	(10)	(070)	(21)
16,000	`100	20	060	`08´	070	`21
18,000	110	21	040	15	060	23
20,000	110	12	040	16	030	15
23,000	100	09	030	06	040	09
25,000	060	06			010	16
30,000	Calm	Calm	010	07	050	03
35,000	160	08	100	08	110	12
40,000			110	09	070	80
45,000			040	20	020	14
50,000			140	10	060	03
55,000			350	12	350	28
60,000			070	40	080	35
6 5,000			120	25	090	18
70,000			070	41	080	62
72,000			060	41		

- 1. Numbers in parentheses are estimated values.
- 2. Wind data was taken on board ship within 30 nautical miles of the tower at Nan Island, Bikini Atoll.
- 3. Tropopause height was 51,000 ft MSL.
- The surface air pressure was 14.65 psi, the temperature 27.8°C, the dew point 81.3°F, and the relative humidity 84%.

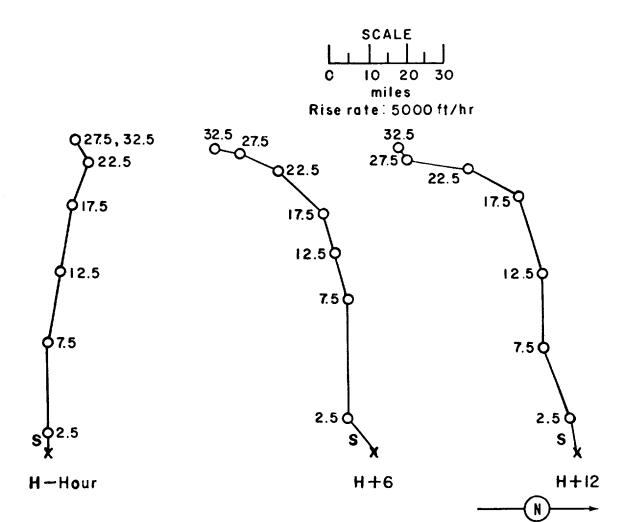


Figure 158. Hodographs for Operation HARDTACK I -

Hickory.

Sequoia

 DATE:
 PPG Time
 GMT

 DATE:
 2 July 1958
 1 July 1958

 TIME:
 0630
 1830

Sponsor: LASL

SITE: PPG - Eniwetok - $\frac{1}{2}$ mi

west of Yvonne 11° 32' 39" N 162° 21' 23" E

Site elevation: Sea level

HEIGHT OF BURST: 6.5 ft

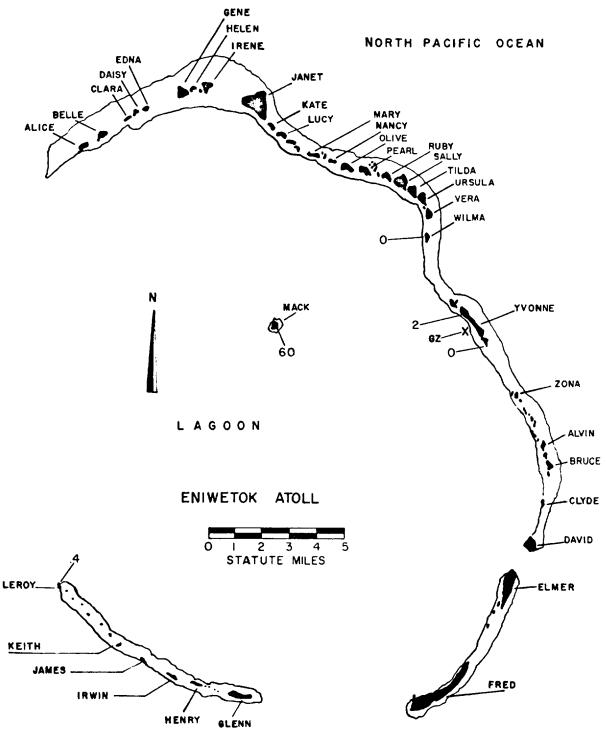
TYPE OF BURST AND PLACEMENT:
Surface burst from barge
on water

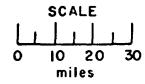
CLOUD TOP HEIGHT: 17,000 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+h hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1.2}$ decay approximation was used to extrapolate the H+h hour dose-rate readings to H+l hour.




Figure 159. Operation HARDTACK I - Sequoia. Island dose rates in r/hr at H+l hour.

Altitude	H-1/2 1	nour	$H+5\frac{1}{2}$ hours		$H+10\frac{1}{2}$ hours	
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	100	14	080	18	090	18
1,000	090	20	090	18	090	23
2,000	090	22	090	22	090	24
3,000	100	22	100	22	090	24
4,000	100	2 6	100	22	090	23
5,000	100	23	100	24	090	22
6,000	100	22	100	20	100	20
7,000	100	22	090	17	100	17
8,000	100	2 5	100	15	100	1 5
9,000	100	21	110	14	100	14
10,000	100	18	110	16	100	16
12,000	110	20	110	16	090	15
14,000	130	15	130	14	130	08
15,000	(120)	(13)	(130)	(13)	(130)	(09)
16,000	120	10	130	13	130	12
18,000	050	07	100	13	120	10
20, 000	040	13	080	09	130	05
23,000	010	23	010	18	040	16
25,0 00	340	18	340	22	0 2 0	07
30,0 00	010	15	030	10	320	09
3 5,000	020	18	020	18	020	07
40,000	010	28	360	21	010	17
45,000	020	36	010	2 9	010	21
50,0 00	2 70	2 6	340	22	300	17
55,000	010	18	310	12	050	08
60, 000	080	14	100	22	110	18
65,000	100	28	100	30	080	29
70,000	090	39	090	45	090	48
75,000	100	55	100	47	100	5 7
80,00 0	090	56	090	54	090	67
85,000	100	72	100	70	090	75
90,000	090	68	100	80	090	76
95,0 00	090	90	090	90	090	83
100,000	090	98			090	100
105,000	100	9 8			090	109
110,000					090	79
112,000					100	82
•						

 $[\]begin{tabular}{ll} \hline \textbf{NOTES:} \\ \hline \textbf{1.} & \textbf{Numbers in parentheses are estimated values.} \\ \end{tabular}$

^{2.} Wind data was taken by the Eniwetok weather station.

Tropopause height was 52,000 ft MSL.
 The surface air pressure was 14.61 psi, the temperature 27.2°C, the dew point 83.5°F, and the relative humidity 76%.

Rise rate: 5000ft/hr

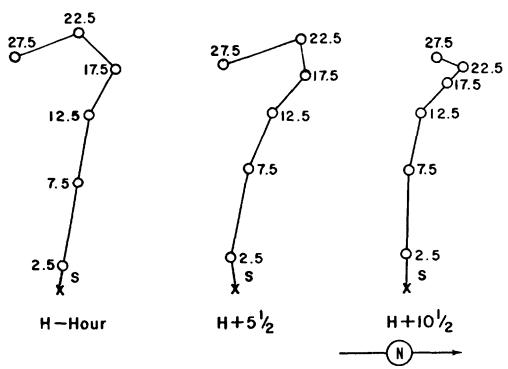


Figure 160. Hodographs for Operation HARDTACK I -

Sequoia.

Cedar

 PPG Time
 GMT

 DATE:
 3 July 1958
 2 July 1958

 TIME:
 0530
 1730

Sponsor: UCRL

SITE: PPG - Bikini - SW of Charlie, 4,000 ft from the island
Site elevation: Sea level

HEIGHT OF BURST: 10.84 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge
on water

CLOUD TOP HEIGHT: 50,000 ft MSL CLOUD BOTTOM HEIGHT: 35,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

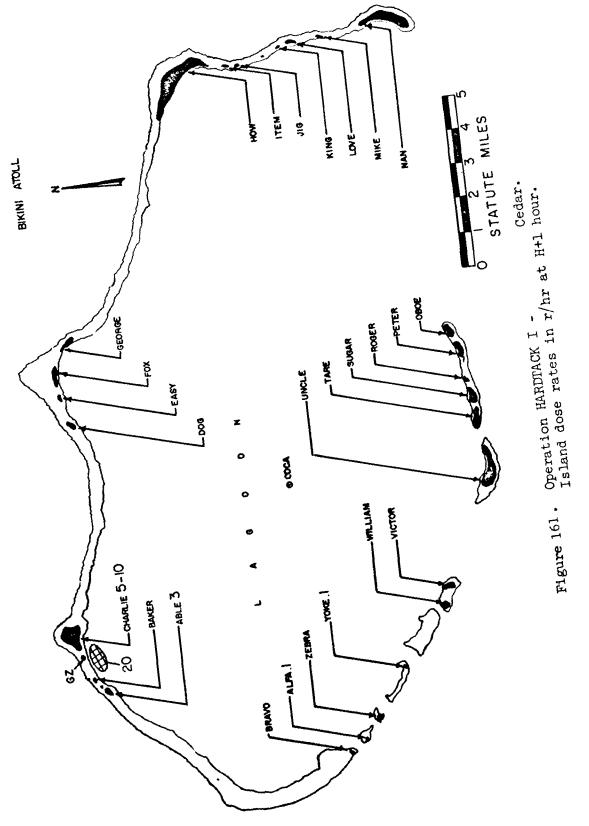


TABLE 58 BIKINI WIND DATA FOR OPERATION HARDIACK I -

CEDAR

feet degrees mph degrees mph degrees mph Surface 080 18 090 16 090 18 1,000 090 26 110 17 080 22 2,000 100 29 100 23 090 25 3,000 110 30 080 28 090 26 4,000 110 29 100 25 100 28 5,000 110 28 090 25 100 26 6,000 110 24 080 24 100 25 7,000 100 24 080 23 070 24 8,000 100 25 080 28 100 22 9,000 100 21 090 30 110 26 10,000 090 20 090 30 100 28 12,000 08	Altitude	$H^{+\frac{1}{2}}$ ho	ur		urs	H+9½ hours	
Surface 080 18 090 16 090 18 1,000 090 26 110 17 080 22 2,000 100 29 100 23 090 25 3,000 110 30 080 28 090 26 4,000 110 29 100 25 100 28 5,000 110 28 090 25 100 26 6,000 110 24 080 24 100 25 7,000 100 25 080 28 100 25 7,000 100 24 080 23 070 24 8,000 100 25 080 28 100 22 9,000 100 21 090 30 110 26 10,000 090 20 090 30 100 28 12,000 080 16 090 21 120 21 14,000 060 13 070 21 080 21 15,000 (040) (13) (070) (20) (090) (20 16,000 030 13 070 20 100 20 18,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 05 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 260 20 240 38 55,000 66,000 090 22 100 26	(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
1,000	ſeet	degrees	mph	degrees	mph	degrees	mph
1,000	Surface	080	18	090	16	090	18
2,000				•			
3,000 110 30 080 28 090 26 4,000 110 29 100 25 100 28 5,000 110 28 090 25 100 26 6,000 110 24 080 24 100 25 7,000 100 24 080 23 070 24 8,000 100 25 080 28 100 22 9,000 100 21 090 30 110 26 10,000 090 20 090 30 100 28 12,000 080 16 090 21 120 21 14,000 060 13 070 21 080 21 15,000 (040) (13) (070) (20) (090) (20 16,000 030 13 070 20 100 20 18,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26							
\$\frac{1}{4},000\$ \$\frac{1}{10}\$ \$\frac{29}{28}\$ \$\frac{1}{00}\$ \$\frac{25}{5}\$ \$\frac{1}{00}\$ \$\frac{28}{6}\$ \$\frac{1}{00}\$ \$\frac{25}{100}\$ \$\frac{26}{6}\$ \$\frac{1}{000}\$ \$\frac{1}{10}\$ \$\frac{24}{24}\$ \$\rm 080\$ \$\rm 24\$ \$\rm 100\$ \$\rm 25\$ \$\rm 7,000\$ \$\rm 100\$ \$\rm 24\$ \$\rm 080\$ \$\rm 23\$ \$\rm 070\$ \$\rm 24\$ \$\rm 8,000\$ \$\rm 100\$ \$\rm 25\$ \$\rm 080\$ \$\rm 28\$ \$\rm 100\$ \$\rm 22\$ \$\rm 9,000\$ \$\rm 100\$ \$\rm 21\$ \$\rm 090\$ \$\rm 30\$ \$\rm 110\$ \$\rm 26\$ \$\rm 10,000\$ \$\rm 090\$ \$\rm 20\$ \$\rm 090\$ \$\rm 30\$ \$\rm 110\$ \$\rm 26\$ \$\rm 10,000\$ \$\rm 090\$ \$\rm 20\$ \$\rm 090\$ \$\rm 30\$ \$\rm 110\$ \$\rm 26\$ \$\rm 12,000\$ \$\rm 080\$ \$\rm 16\$ \$\rm 090\$ \$\rm 21\$ \$\rm 120\$ \$\rm 21\$ \$\rm 14,000\$ \$\rm 060\$ \$\rm 13\$ \$\rm 070\$ \$\rm 21\$ \$\rm 080\$ \$\rm 21\$ \$\rm 15,000\$ \$\rm (040)\$ \$\rm (13)\$ \$\rm (070)\$ \$\rm (20)\$ \$\rm (090)\$ \$\rm (20\$ \$\rm 18,000\$ \$\rm 350\$ \$\rm 03\$ \$\rm 050\$ \$\rm 17\$ \$\rm 060\$ \$\rm 13\$ \$\rm 20,000\$ \$\rm 270\$ \$\rm 12\$ \$\rm Calm\$ \$\rm 340\$ \$\rm 08\$ \$\rm 23,000\$ \$\rm 270\$ \$\rm 15\$ \$\rm Calm\$ \$\rm 340\$ \$\rm 08\$ \$\rm 25,000\$ \$\rm (250)\$ \$\rm (16)\$ \$\rm 280\$ \$\rm 10\$ \$\rm 300\$ \$\rm 07\$ \$\rm 30,000\$ \$\rm 230\$ \$\rm 21\$ \$\rm 240\$ \$\rm 17\$ \$\rm 220\$ \$\rm 16\$ \$\rm 35,000\$ \$\rm 250\$ \$\rm 47\$ \$\rm 240\$ \$\rm 39\$ \$\rm 220\$ \$\rm 38\$ \$\rm 50,000\$ \$\rm 250\$ \$\rm 47\$ \$\rm 240\$ \$\rm 39\$ \$\rm 220\$ \$\rm 38\$ \$\rm 55,000\$ \$\rm 250\$ \$\rm 47\$ \$\rm 240\$ \$\rm 39\$ \$\rm 220\$ \$\rm 38\$ \$\rm 55,000\$ \$\rm 260\$ \$\rm 20\$ \$\rm						· ·	26
5,000 110 28 090 25 100 26 6,000 110 24 080 24 100 25 7,000 100 24 080 23 070 24 8,000 100 25 080 28 100 22 9,000 100 21 090 30 110 26 10,000 090 20 090 30 100 28 12,000 080 16 090 21 120 21 14,000 060 13 070 21 080 21 15,000 (040) (13) (070) (20) (090) (20 16,000 030 13 070 20 100 20 18,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 08 25,000 (250)			-	100			28
6,000 110 24 080 24 100 25 7,000 100 24 080 23 070 24 8,000 100 25 080 28 100 22 9,000 100 21 090 30 110 26 10,000 090 20 090 30 100 28 12,000 080 16 090 21 120 21 14,000 060 13 070 21 080 21 15,000 (040) (13) (070) (20) (090) (20 16,000 030 13 070 20 100 20 18,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 05 23,000 270 15 Calm Calm 340 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26				090			26
7,000 100 24 080 23 070 24 8,000 100 25 080 28 100 22 9,000 100 21 090 30 110 26 10,000 090 20 090 30 100 28 12,000 080 16 090 21 120 21 14,000 060 13 070 21 080 21 15,000 (040) (13) (070) (20) (090) (20 16,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 28 220 46 230 41 53,000 240 38 55,000 260 26 290 09 60,000 090 22 100 26						100	
8,000 100 25 080 28 100 22 9,000 100 21 090 30 110 26 10,000 090 20 090 30 100 28 12,000 080 16 090 21 120 21 14,000 060 13 070 21 080 21 15,000 (040) (13) (070) (20) (090) (20 16,000 030 13 070 20 100 20 18,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 20 33 210 25 210 47 40,000 <td< td=""><td></td><td>100</td><td>24</td><td>080</td><td>23</td><td>070</td><td>24</td></td<>		100	24	080	23	070	24
10,000 090 20 090 30 100 28 12,000 080 16 090 21 120 21 14,000 060 13 070 21 080 21 15,000 (040) (13) (070) (20) (090) (20 16,000 030 13 070 20 100 20 18,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 47 240 39 220 38 50,000		100	25	080		100	22
12,000 080 16 090 21 120 21 14,000 060 13 070 21 080 21 15,000 (040) (13) (070) (20) (090) (20 16,000 030 13 070 20 100 20 18,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26	9,000	100	21	090	30	110	26
14,000 060 13 070 21 080 21 15,000 (040) (13) (070) (20) (090) (20 16,000 030 13 070 20 100 20 18,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000	10,000		20	090	30	100	28
15,000 (040) (13) (070) (20) (090) (20 16,000 030 13 070 20 100 20 18,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26	12,000	080	16	090	21		21
16,000 030 13 070 20 100 20 18,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26	14,000	060	13	070	21	080	21
18,000 350 03 050 17 060 13 20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 3½0 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 2½0 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26		(040)	(13)	(070)	(20)		(20)
20,000 270 12 Calm Calm 340 05 23,000 270 15 Calm Calm 340 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26							
23,000 270 15 Calm Calm 340 08 25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26				050			
25,000 (250) (16) 280 10 300 07 30,000 230 21 240 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26						-	
30,000 230 21 240 17 220 16 35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26		'				-	
35,000 200 33 210 25 210 47 40,000 210 40 210 47 220 53 45,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26						_	
40,000 210 40 210 47 220 53 45,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26							
45,000 250 47 240 39 220 38 50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26							
50,000 250 28 220 46 230 41 53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26							
53,000 240 38 55,000 260 20 290 09 60,000 090 22 100 26			•				
55,000 260 20 290 09 60,000 090 22 100 26		250				230	41
60,000 090 22 100 26				240	38		
						_	
05,000 000 20 100 31							
	05,000	080	20			100	31

^{1.} Numbers in parentheses are estimated values.

^{2.} Wind data was taken on board ship within 30 nautical miles of the Tower at Nan island, Bikini Atoll.

^{3.} Tropopause height was 51,000 ft MSL.
4. The surface air pressure was 14.65 psi, the temperature 28.4°C, the dew point 76.3°F, and the relative humidity 79%.

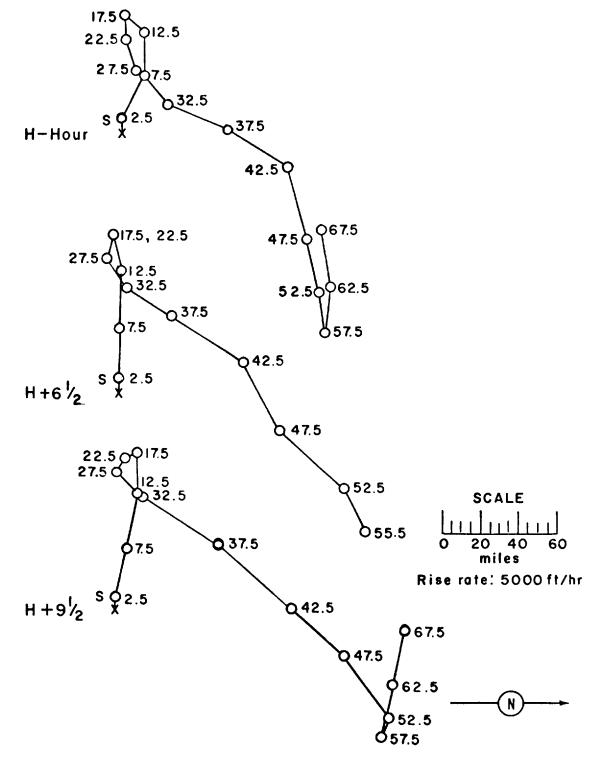


Figure 162. Hodographs for Operation HARDTACK I -

Cedar.

Dogwood

PPG Time GMT

DATE: 6 July 1958 5 July 1958

TIME: 0630 1830

Sponsor: UCRL

SITE: PPG - Eniwetok - SW of

Janet 4,000 ft to nearest edge of island (Sta. 1312)

11° 39' 48" N 162° 13' 48" E

HEIGHT OF BURST: 12.25 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from barge
on water

CLOUD TOP HEIGHT: 58,000 ft MSL CLOUD BOTTOM HEIGHT: 35,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1\cdot 2}$ decay approximation was used to extrapolate the H+4 hour doserate readings to H+1 hour.

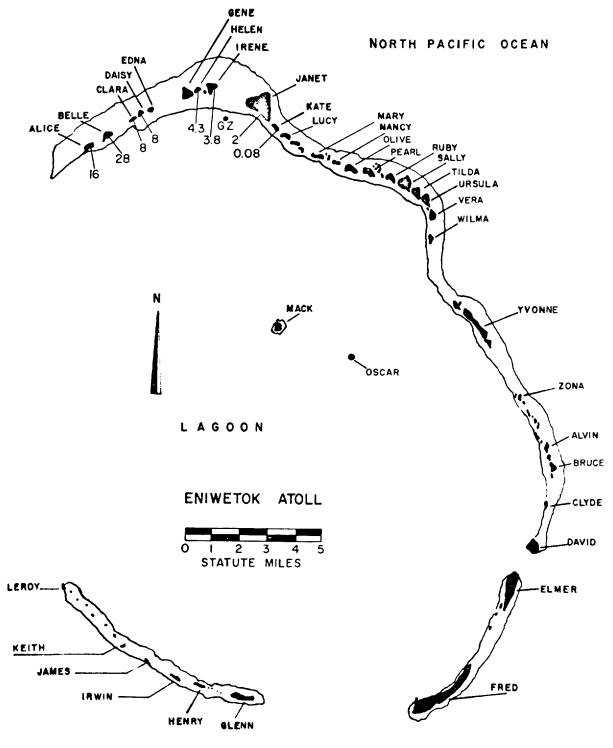


Figure 163. Operation HARDTACK I - Dogwood. Island dose rates in r/hr at H+l hour.

TABLE 59 ENIWETOK WIND DATA FOR OPERATION HARDTACK I-

$\mathbf{D}\mathbf{C}$	·~	1 10	\sim	\mathbf{T}
IA.	Xт	wı.	")	1)

Altitude	$H-\frac{1}{2}$ h	our	H+5⅓ hc	urs	H+8] hc	urs
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
	000	-0		- 0	202	- /
Surface	090	18	090	18	080	16
1,000	080	20	080	17	080	16
2,000	080	24	090	20	070	18
3,000	090	25	100	17	070	21
4,000	090	24	100	15	080	21
5,000	090	20	100	15	080	16
6,000	090	17	100	15	090	14
7,000	080	20	100	14	090	15
8,000	080	17	080	14	090	15
9,000	070	18	080	17	080	14
10,000	080	20	090	17	090	14
12,000	100	16	090	18	100	14
14,000	100	14	100	20	120	17
15,000	(100)	(17)	(100)	(20)	(130)	(16)
16,0 00	100	21	110	22	150	15
18,000	100	22	110	21	120	22
20,000	100	18	110	17	120	20
23,000	100	12	100	23	110	26
25,000	100	12	090	24	100	29
30,000	120	21	080	30	140	20
35,000	130	18	160	18	160	21
40,000	190	38	180	22	160	25
45,000	210	40	200	29	140	38
50,000	280	15	250	21	240	15
55,000	290	17	160	09	240	05
60,000	030	10	090	18	080	20
65,000	050	22	090	514		
70,000	050	44	090	38		
75,000	050	40	100	40		
80,000			100	54		
85,000	*		100	59		
90,000			090	76		
95,000			100	92		
100,000			100	101		
105,000			090	234		
- -				-		

^{1.} Numbers in parentheses are estimated values.

^{2.} Wind data was taken by the Eniwetok weather station.

Tropopause height was 52,000 ft MSL.
 The surface air pressure was 14.63 psi, the temperature 27.4°C, the dew point 77°F, and the relative humidity 85%.

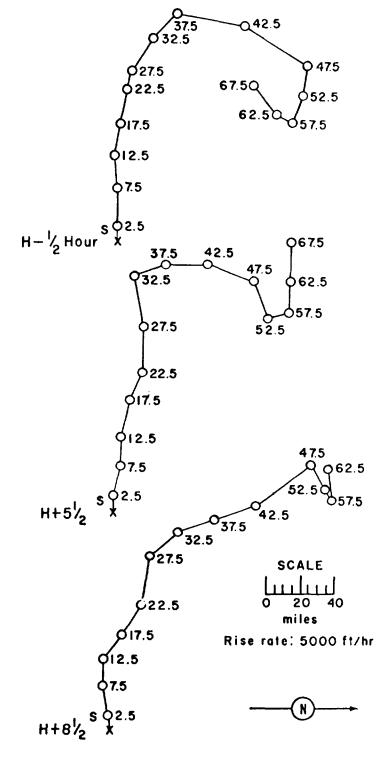


Figure 164. Hodographs for Operation HARDTACK I -

Dogwood.

Poplar

<u>PPG Time</u> <u>GMT</u>

<u>DATE:</u> 12 July 1958 12 July 1958

TIME: 1530 0330

Sponsor: UCRL

SITE: PPG - Bikini - SW of Charlie, 7,500 ft from the nearest edge of island 11° 41' 17" N 165° 15' 52" E
Site elevation: Sea level

HEIGHT OF BURST: 11.66 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from barge on water over reef

CLOUD TOP HEIGHT: > 61,000 ft MSL CLOUD BOTTOM HEIGHT: 42,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from the Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1.2}$ decay approximation was used to extrapolate the H+4 hour dose rate readings to H+1 hour.

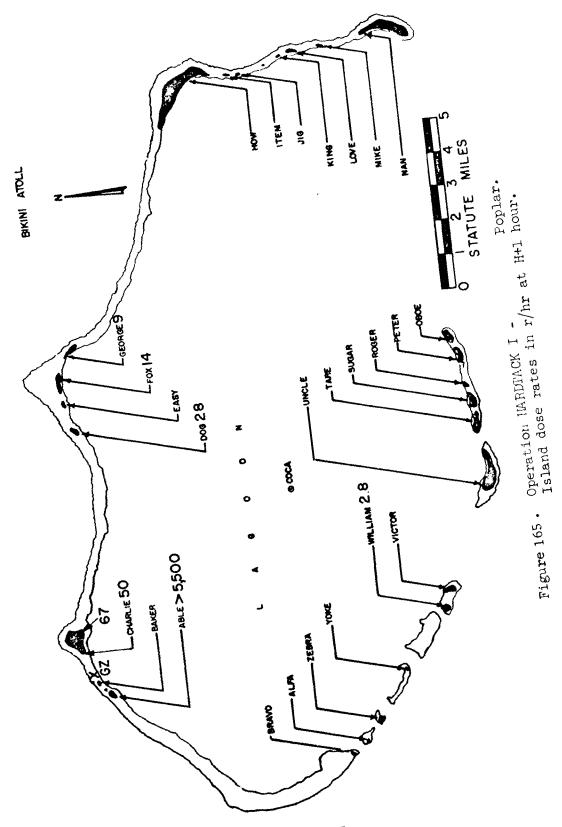


TABLE 60 BIKINI WIND DATA FOR OPERATION HARDTACK I - POLAR

Altitude	$ H+\frac{1}{2}$ h	lour	H+81 h	iours
(MSL)	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph
Surface	060	14	070	18
1,000	070	22	070	21
2,000	060	24	080	24
3,000	060	22	080	22
4,000	060	22	080	20
5,000	050	22	090	15
6,000	060	21	090	14
7,000	070	18	080	17
8,000	070	$I_{I^{+}}$	080	20
9,000	070	07	070	21
10,000	060	13	070	24
12,000	080	22	070	26
14,000	100	18	090	21
15,000	(100)	(15)	(100)	(21)
16,000	110	13	100	21
18,000	120	16	120	16
20,000	150	12	110	16
23,000	220	07	100	16
25,000	260	08	110	14
30,000		~-	210	09
35,000		~-	210	16
40,000		~ ~	210	17
45,000		~-	130	21
50,000			210	31
55,000		~-	180	12
60,000		~-	090	25
65,000		~ ~	090	24
70,000			090	36
72,000		~-	080	47

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Weather observations were made using the standard rawinsonde system on Nan Island (Bikini Atoll) adjacent to the Nan Tower. Additional data was taken on board destroyers.
- Tropopause height was 55,000 ft MSL.
 The surface air pressure was 14.62 psi, the temperature 27.9°C, the dew point 81.9°F, and the relative humidity 99%.

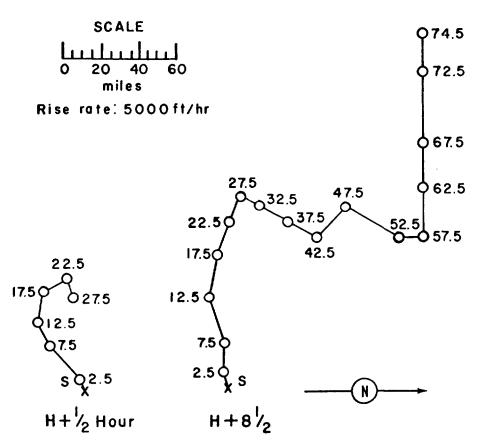


Figure 166. Hodographs for Operation HARDTACK I -

Poplar.

OPERATION HARDTACK I - Scaevola

<u>PPG Time</u> <u>GMT</u> <u>DATE:</u> 114 July 1958 114 July 1958

SITE: PPG - Eniwetok - Off TIME: 1600 0400 Yvonne

11° 33' 15" N 162° 21' 24" E

Site elevation: Sea level

HEIGHT OF BURST: 20 ft

Sponsor: IASL

TYPE OF BURST AND PLACEMENT:

CLOUD TOP HEIGHT: NM Surface burst from barge CLOUD BOTTOM HEIGHT: NM

on water

REMARKS:

No fallout.

Pisonia

PPG Time GMT DATE: 18 July 1958 17 July 1958

TIME: 1100 2300

SITE: PPG - Eniwetok - 11,000 ft

W of Yvonne 11° 33' N 162° 19' 43"

Sponsor: LASL

Site elevation: Sea level

HEIGHT OF BURST: 6.5 ft

TYPE OF BURST AND PLACEMENT: Surface burst from barge on water

CLOUD TOP HEIGHT: 55,000 ft MSL CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The t-1.2 decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

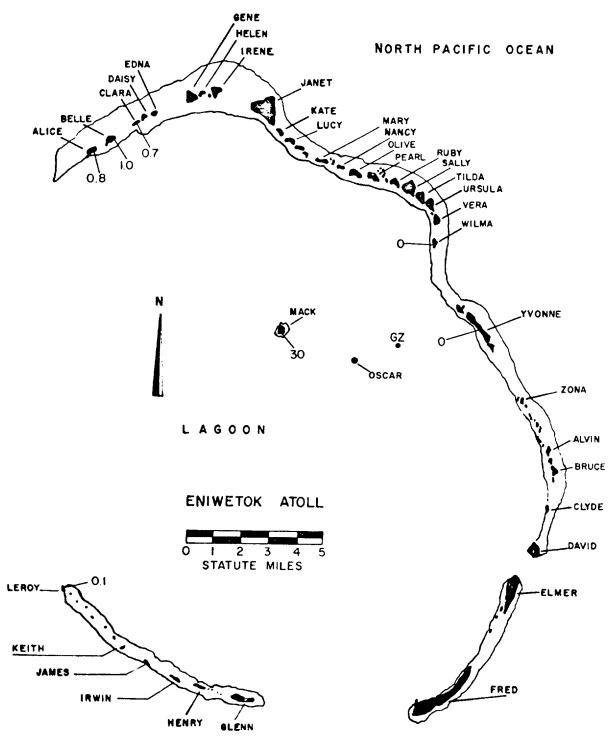


Figure 167. Operation HARDTACK I - Pisonia. Island dose rates in r/hr at H+l hour.

TABLE 61 ENIWETOK WIND DATA FOR HARDTACK I -PISONIA

Altitude	H+1 h	our	H+6 h	ours	H+13 h	ours
(MSL)	Dir	Speed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	Calm	Calm	330	09	070	14
1,000	180	09	030	05	070	55
2,000	170	10	090	09	070	20
3,000	160	14	090	12	080	17
4,000	140	17	100	13	090	15
5,000	130	14	120	14	110	15
6,000	130	12	140	16	120	14
7,000	130	14	150	17	130	10
8,000	120	10	150	18	120	10
9,000	120	08	150	20	110	14
10,000	120	13	150	17	120	18
12,000	110	12	130	13	110	14
14,000	100	09	100	12	090	14
15,000	(100)	(08)	(080)	(13)	(080)	(14)
16,000	090	07	070	15	070	14
18,000	120	17	110	05	090	09
20,000	120	14	120	02	100	05
23,000	080	18	090	14	140	09
25,000	06 0	15	090	17	120	12
30,00 0	060	22	060	15	090	07
35,000	050	21	040	17	060	07
40,000	070	09	050	12	090	09
45,000	040	20	040	06	040	06
50,000	050	12	050	15	130	10
55,000	100	12	210	05	130	12
60,000	110	22	120	30	110	20
65,000	090	31	090	39	090	44
70,000	090	52	090	38	090	45
75,000	090	55	100	Š 1	090	54
80, 000	090	67	100	61	090	76
85,000	100	68	090	78	090	80
90,000	090	82	090	87		
95,000	090	75	090	98		
100,000	090	97	090	83		
101,000			090	76		
105,000	090	101				
	- / -					

NOTES:

- 1. Numbers in parentheses are estimated values.
- Wind data was taken by the Eniwetok weather station.
 The surface air pressure was 14.67 psi, the temperature 26.8°C, the dew point 74.9°F, and the relative humidity 83%.

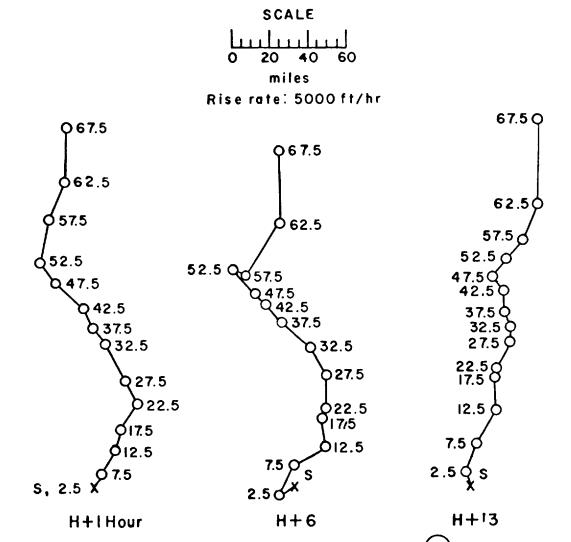


Figure 168. Hodographs for Operation HARDTACK I -

Pisonia.

Juniper

PPG Time

GMT

Sponsor: UCRL

DATE: 22 July 1958

22 July 1958

TIME: 1620 0420 SITE: PPG - Bikini - 4,000 ft

from west end of Tare

11° 29' 46" N 165° 22' 15" E

Site elevation: Sea level

HEIGHT OF BURST: 12.11 ft

TYPE OF BURST AND PLACEMENT:

Surface burst from barge

on water

CLOUD TOP HEIGHT: 40,000 ft MSL CLOUD BOTTOM HEIGHT: 24,000 ft MSL

REMARKS:

Only individual island dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1.2}$ decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

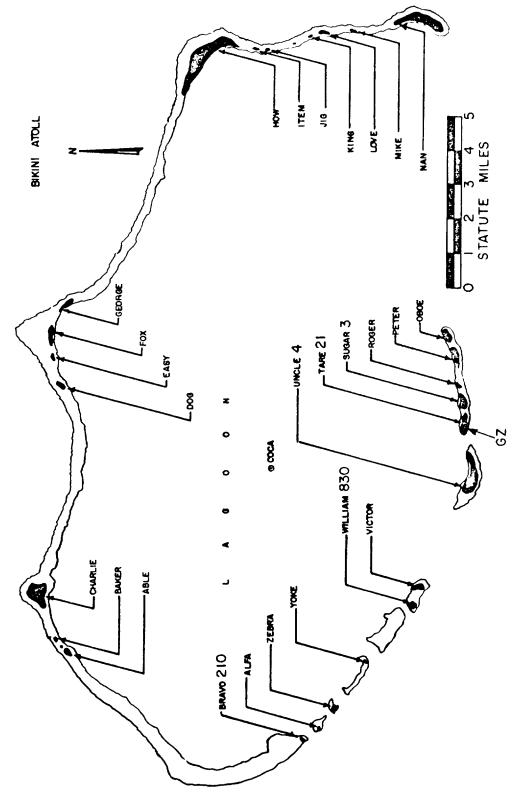


Figure 169. Operation HARDTACK I - Juniper. Island dose rates in r/hr at H+1 hour.

Altitude		our		ours	H+15# 1	nours
(MSL)	Dir	Creed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph
Surface	080	16	100	09	110	07
1,000	080	18	100	16	110	13
2,000	090	20	100	16	120	14
3,000	100	21	110	17	120	14
4,000	100	21	110	17	120	14
5,∞∞	100	20	110	17	110	15
6,000	110	18	110	18	110	17
7,000	110	16	100	20	110	20
8,000	110	13	090	18	100	18
9,000	110	09	090	17	100	15
10,000	110	10	080	16	100	15
12,000	120	13	090	16	100	16
14,000	120	16	090	16	100	16
15,000	(120)	(15)	(090)	(17)	(100)	(16)
16,000	130	14	100	18	100	16
18,000	130	15	100	15	100	13
20,000	130	18	110	18	090	12
23,000	130	21	120	20	100	10
25,000	140	22	140	09	100	09
30,000	140	16	150	07	080	06
35,000	150	12	300	02	260	12
40,000	310	12	310	14	330	10
45,000	090	10	070	13	300	13
50,000	120	12	120	09	050	09
55,0 00	230	07	320	03	060	07
60,0 00	080	31	090	38	090	36
65,000	090	36	080	32		
70,000	100	48	080	38		
75,000	090	51	090	41		
80,000	080	63	080	63		
85, 000	090	67	090	79		
90,000	080	67	090	98		
95,000	080	76	090	121		
100,000	090	78				
105,000	090	80				

NOTES:

- 1. Numbers in parentheses are estimated values.
- 2. Weather observations were made using the standard rawinsonde system on Nan Island (Bikini Atoll) adjacent to the Nan Tower. Additional data was taken on board destroyers.
- 3. Tropopause height was 51,000 ft MSL.
 4. The surface air pressure was 14.64 psi, the temperature 30.8°C, the dew point 78.9°F, and the relative humidity 76%.

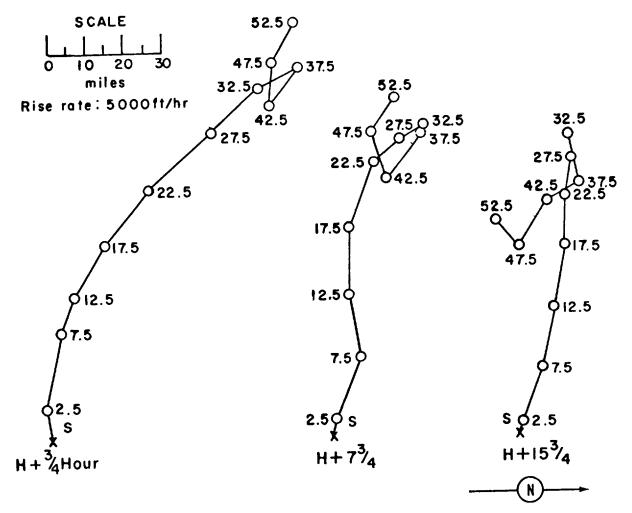


Figure 170. Hodographs for Operation HARDTACK I -

Juniper.

Olive

 DATE:
 PPG Time
 CMT

 23 July 1958
 22 July 1958

 TIME:
 0830
 2030

Sponsor: UCRL

SITE: PPG - Eniwetok - SW of Janet, 4,000 ft from the nearest edge of island (Sta. 1312)
11° 39' 48" N
162° 13' 48" E
Site elevation: Sea level

HEIGHT OF BURST: 8.0 ft

CLOUD TOP HEIGHT: 50,000 ft MSL CLOUD BOTTOM HEIGHT: 15,000 ft MSL

TYPE OF BURST AND PLACEMENT:
Surface burst from barge
on water

REMARKS:

Only individual dose rates are available. These were obtained from Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that ${\bf z}$ ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/PDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1.2}$ decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

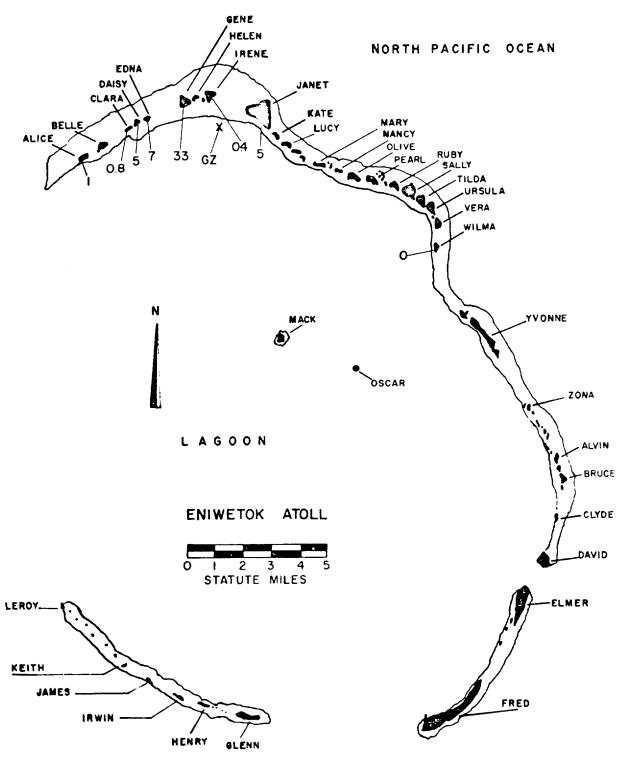


Figure 171. Operation HARDTACK I - Olive. Island dose rates in r/hr at H+1 hour.

TABLE 63 ENIVEROK VIND DATA FOR OPERATION HARDTACK I -

OLI VE

Altitude		ours	H-hc		H + 3]: h	ours.		ours
(MSL)	Dir	Speed	Dir	Opeed	Dir	Speed	Dir	Speed
feet	degrees	mph	degrees	mph	degrees	mph	degrees	mph
	210	3.0	000	20	300	10	160	0.3
Surface	310	18	230	18	130	18	160	21
1,000	130	25	130	23	120	20	140	15
2,000	130	32	130	29	130	24	150	17
3,000	130	29	130	26	140	22	150	21
4,000	130	26	140	24	150	2 0	150	21
5,000	130	26	140	24	150	20	160	21
6,000	130	26	140	24	150	22	160	50
7,000	120	29	130	28	140	26	160	17
8,000	120	29	130	29	140	28	140	17
9,000	120	26	130	25	140	24	140	16
10,000	120	23	130	23	140	22	140	16
12,000	110	23	120	23	130	22	140	20
14,000	120	24	120	24	130	24	130	20
15,000			(120)	(23)	(130)	(22)	(140)	(18)
16,000	120	23	120	22	130	20	140	18
18,000					150	23	140	20
20,000	120	21	130	23	140	26	130	20
23,000	140	17	140	17	130	17	130	20
25,000	140	24	140	18	140	12	130	18
30,000	150	15	150	14	150	12	1 1 0	15
3 5,∞0	190	17	180	17	160	17	150	10
40,000	180	13	180	15	180	17	200	09
45,000	140	10	140	14	130	18	100	10
50,000	050	07	090	07	150	07	320	12
55,000	040	15	070	15	100	14	090	26
60,000	100	33	100	32	100	31	120	25
65,000	070	33	080	37	100	41	090	38
70,000					110	38	090	38
75,000					090	52	090	59
80,000					100	70	100	67
85,000					100	74	090	67
90,000					090	82	090	89
91,000							090	92
94,000					090	90		
• •					-	-		

NOTES:

- Numbers in parentheses are estimated values.
 Vind data was taken by the Eniwetok weather station.
 Tropopause height was 48,000 ft MSL.
 H-hour values were interpolated from H-2½ hours and H+3½ hours
- 5. The surface air pressure was 14.64 psi, the temperature 26.4°C, the dew point $76^{\circ}F$, and the relative humidity 89%.

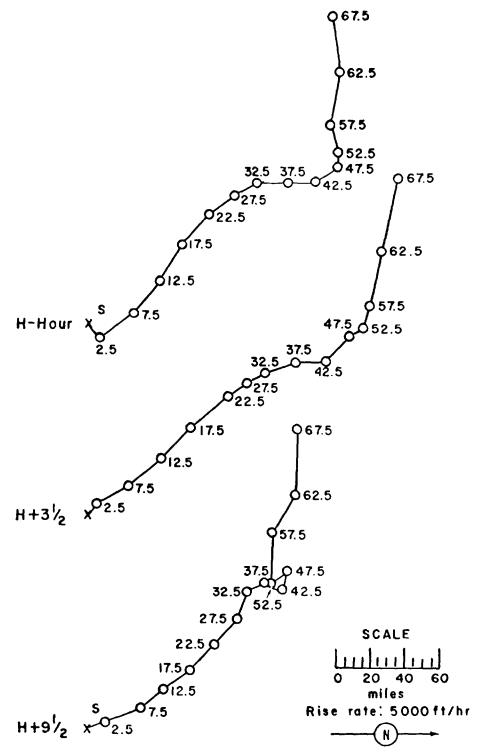


Figure 172. Hodographs for Operation HARDTACK I -

Olive.

Pine

<u>PPG Time</u> <u>GMT</u> <u>DATE:</u> 27 July 1958 26 July 1958 TTME: 0830 2030 Sponsor: UCRL

SITE: PPG - Eniwetok - SW of Janet, 8,000 ft to nearest edge of island 11° 39' 22" N 162° 13' 11" E
Site elevation: Sea level

HEIGHT OF BURST: 8.0 rt

TYPE OF BURST AND FLACEMENT:
Surface burst from barge
on water

CLOUD HEIGHT: Not available

REMARKS:

Only individual island dose rates are available. These were obtained from the Radiological Safety organization helicopter surveys at H+4 hours. The helicopter survey technique called for the pilot either to land the aircraft at the desired spot, so that a ground reading could be obtained, or to make a slow pass over the desired spot at an elevation of 25 feet. Readings taken at 25 feet were multiplied by a factor of 2 in order to obtain a reasonable approximation of the true ground reading. The basic instrument used in the aerial surveys was the AN/FDR-39 survey meter modified to read up to 500 r/hr. The $t^{-1\cdot 2}$ decay approximation was used to extrapolate the H+4 hour dose-rate readings to H+1 hour.

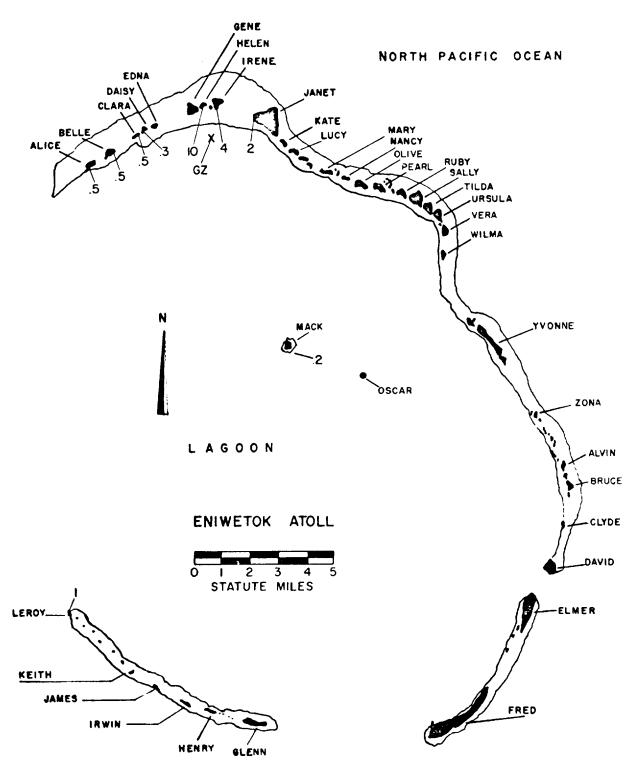


Figure 173. Operation HARDTACK I - Pine. Island dose rates in r/hr at H+l hour.

Altitude	H- ': 1	nour	H+3 1	hours	H+91, he	ours
(MSL)	Dir	Speed	Dir	Speed	Dir.	Speed
feet	degrees	mph	degrees	mph	$ ext{degrees}$	mph
Surface	200	18	230	12	500	05
1,000	210	17			190	08
2,000	200	17			240	07
3,000	200	17			240	12
4,000	200	17			550	.13
5,000	200	12	220	07	210	13
6,000	190	12	180	09	550	13
7,000	170	05	170	10	550	13
8,000	200	05	170	09	510	12
9,000	200	05	180	09	200	12
10,000	200	05	180	10	200	12
12,000	170	05	180	08	170	10
14,000	150	06	170	09	210	10
15,000	(140)	(05)	(140)	(05)	(210)	(06)
16,000	130	05	160	06	220	02
18,000	080	05	190	05	Calm	Calm
20,000	100	80	190	03	120	05
23,000	140	13	180	09	120	07
25,000	160	17	160	14	150	08
3 0,000	160	26	150	18	140	10
35,000	150	24	140	26	120	20
40,000	190	16	140	21	140	2 6
45,000	200	16	150	20	120	33
50,000	190	14	170	13	180	05
55,000	130	14	130	14	120	15
60,000	080	23	090	23	130	23
65,000	090	41				
70,000	100	48				
75,000	100	59				
80,000	100	69				
85,000	100	81				
90,000	100	91	100	68		
92,000			100	70		
95,000	100	90				
100,000	100	99				
105,000	100	240				
110,000	100	126				
115,000	100	232				
		-,-				

NOTES:

- Numbers in parentheses are estimated values.
 Wind data was taken by the Eniwetok weather station.
 Tropopause height was 52,000 ft MSL.
 The surface air pressure was 14.64 psi, the temperature 26.7°C, the dew point 75.5°F, and the relative humidity 85%.

Figure 174. Hodographs for Operation HARDTACK I -

Pine.

Teak

<u>PPG Time GMT</u>

<u>DATE:</u> 31 July 1958 31 July 1958

TIME: 2350 1050

Sponsor: DOD

SITE: PPG - Johnston Island

16° 44' 38" N 169° 32' 00" W

HEIGHT OF BURST: 250,000 ft

TYPE OF BURST AND PLACEMENT:

High altitude burst i'rom Redstone missile over

vicinity of Johnston Island.

REMARKS:

No local fallout.

CLOUD TOP HEIGHT: NM CLOUD BOTTOM HEIGHT: NM

Quince

PPG Time 6 Aug 1958 6 Aug 1958 TIME: 1415 0215

Sponsor: UCRL - DOD

SITE: PPG - Eniwetok - Yvonne 11° 33' 15" N 162° 21' 24" E Site elevation: Sea level

HEIGHT OF BURST: 3 ft

TYPE OF BURST AND PLACEMENT: Surface burst from platform on coral soil

CLOUD TOP MEIGHT: 1,500 ft MSL

CLOUD BOTTOM HEIGHT: NM

REMARKS:

Only alpha contamination resulted from this detonation. Surface alpha monitoring was conducted throughout the area on D and D+1 day with PAC-3G gas-flow proportional alpha counters. The readings were taken in counts per minute, corrected for the probe area, and multiplied by the appropriate shielding factors to compensate for the roughness of the surface monitored. The two isoconcentration lines shown are the most significant ones, since 3,500 $\mu_{\rm g}/m^2$ is the chronic hazard limit and any concentration in excess of 1,000 $\mu_{\rm B}/m^2$ requires decontamination. It is interesting to note that in the great majority of cases the alpha concentrations in the downwind area were higher on D+1 than on D day.

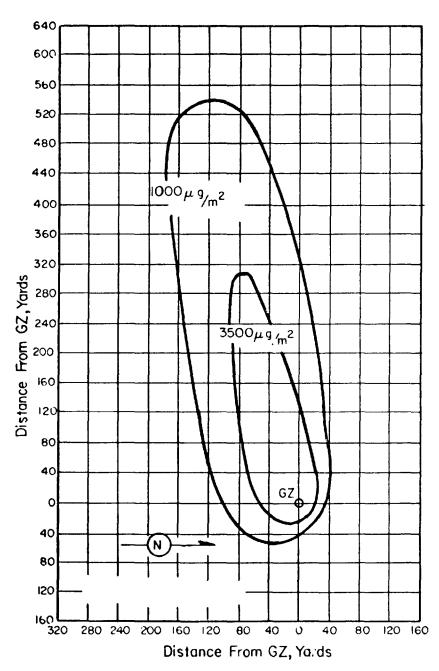


Figure 175. Operation HARDTACK I - Quince.
Alpha contamination in micrograms per square meter.

TABLE 65 ENIWETOK WIND DATA FOR OPERATION HARDIACK I - QUINCE

Altitude	H-hour			
(MSL)	Dir	Speed		
feet	degrees	mph		
Surface	060	13		
241	070	14		
482	070	14		
723	070	16		
964	080	16		

NOTE: Wind data was taken by the Eniwetok weather station.

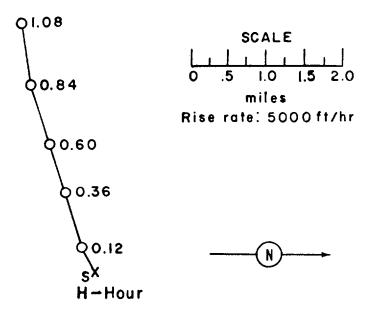


Figure 176. Hodograph for Operation HARDTACK I -

Quince.

Orange

 DATE:
 PPG Time
 GMT

 11 Aug 1998
 11 Aug 1998

 TIME:
 2330
 1030

Sponsor: DOD

<u>SITE:</u> PPG - Johnston 16° 21' 30" N 169° 32' 08" E

HEIGHT OF BURST: 1/41,1000

TYPE OF BURST AND PLACEMENT:

High altitude burst from
Redstone missile over the
vicinity of Johnston Island.

CLOUD TOP HEIGHT: NM CLOUD BOTTOM HEIGHT: NM

REMARKS: No local fallout.

Fig

PPG Time

GMT

DATE:

1.8 Aur; 1958 1

18 Aur, 1958

1600 0400

Sponsor: UCRL - DOD

SITE: PPG - Eniwetok -

Yvonne

11° 33' 15" N 162° 21' 24" E

Site elevation: Sea level

HEIGHT OF BURST: 1.5 ft

TYPE OF BURST AND PLACEMENT:
Surface burst from platform
over Nevada soil

CLOUD TOP HEIGHT: 5,400 ft MSL CLOUD BOTTOM HEIGHT: 4,300 ft MSL

REMARKS:

The dose-rate contours were obtained by ground survey readings made by scientific projects. Actual decay measurements were used to correct the dose-rate readings to H+1 hour. The portion of the pattern on the island is reliable. That portion which is over water is less reliable because it was not based upon free-field dose-rate readings but upon calculations made from readings taken on five barges and from samples collected in sticky pans mounted on 87 buoys.

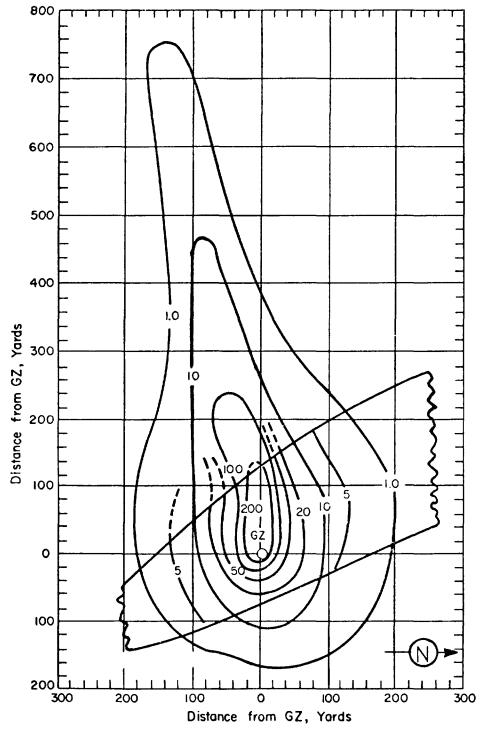


Figure 177. Operation HARDTACK I - Fig. On-site dose rate contours in r/hr at H+l hour.

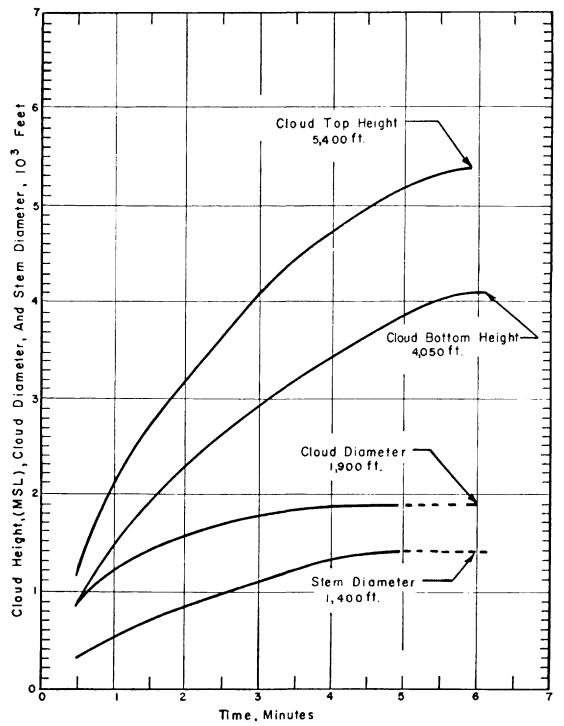


Figure 178. Cloud Dimensions: Operation HARDTACK I -

314

Fig.

Altitude Range	H-ho	ur
(MSL)	Dir	Speed
feet	degrees	mph
0 - 1,000	080	17
1,000 - 2,000	090	19
2,000 - 3,000	100	18
3,000 - 4,000	110	19
4,000 - 5,000	100	18
5,000 - 6,000	100	18
6,000 - 7,000	090	18
7,000 - 8,000	090	21
8,000 - 9,000	090	21
9,000 -10,000	080	21

- NOTES: 1. Wind data was obtained by the weather stations on Yvonne Island (Eniwetok Atoll); which were located 1,000 yds and 1,500 yds from GZ.
 - 2. The surface air pressure was 14.62 psi, the temperature 30° C, the dew point 78° F, and the relative humidity 77%.

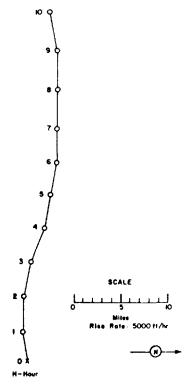


Figure 179. Hodograph for Operation HARDTACK I -

Fig.

OPERATION ARGUS -

ARGUS I

Local Time GMT

DATE: 27 Aug 1958 27 Aug 1958 TIME: 0128 0228

TOTAL YIELD: 1-2 kt estimated

FIREBALL DATA:

Time to 1st minimum: NM
Time to 2nd maximum: NM
Radius at 2nd maximum: NM

Sponsor: DOD

SITE: South Atlantic

38° 48' S 11° 55' W

HEIGHT OF BURST: ~ 300 miles

TYPE OF BURST AND PLACEMENT:

High altitude burst

CLOUD TOP HEIGHT: NM CLOUD BOTTOM HEIGHT: NM

REMARKS:

No fallout.

OPERATION ARGUS -

ARGUS II

<u>Local Time</u> <u>GMT</u>

DATE: 30 Aug 1978 30 Aug 1958

TIME: 0218 0318

TOTAL YIELD: 1-2 kt estimated

HEIGHT OF BURST: ~ 300 miles

TYPE OF BURST AND PLACEMENT:

High altitude burst

SITE: South Atlantic 49° 23' S 08° 43' W

Sponsor: DOD

FIREBALL DATA:

Time to 1st minimum: NM
Time to 2nd maximum: NM
Radius at 2nd maximum: NM

CLOUD TOP HEIGHT: NM CLOUD BOTTOM HEIGHT: NM

REMARKS: No fallout

OPERATION ARGUS -

ARGUS III

Local time

DATE: 6 Sep 1958 6 Sep 1958 TIME: 2113

TOTAL YIELD: 1-2 kt estimated

FIREBALL DATA:

Time to 1st minimum: NM Time to 2nd maximum: NM Radius at 2nd maximum: NM

REMARKS: No fallout

Sponsor: DOD

South Atlantic SITE:

49° 30' S 10° 24' W

HEIGHT OF BURST: ~ 300 miles

TYPE OF BURST AND PLACEMENT:

High altitude burst

CLOUD TOP HEIGHT: NM

CLOUD BOTTOM HEIGHT: NM

Adobe

<u>DATE</u>: 25 Apr 1962 25 Apr 1962 TIME: 0545 1545 SPONSOR: LASL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

Aztec

<u>LOCT</u> <u>GMT</u>

DATE: 27 Apr 1962 27 Apr 1962

TIME: 0601 1601

SPONSOR: LASL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (free fall), over Pacific
Ocean

OPERATION DOMINIC -

Arkansas

<u>LOCT</u> <u>GMT</u> <u>D/ IE</u>: 2 May 1962 2 May 1962 TIME: 0801 1801 SPONSOR: LRL

SITE: Christmas Island, GZ-15

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (parachute drop), over
Pacific Ocean

Questa

<u>LOCT</u> <u>GMT</u>

<u>DATE</u>: 4 May 1962 4 May 1962

TIME: 0904 1904

SPONSOR: LASL

SITE: Christmas Island, GZ-15

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (free fall), over
Pacific Ocean

OPERATION DOMINIC -

Frigate

Bird

<u>LOCT</u> <u>GMT</u> <u>DATE</u>: 6 May 1962 6 May 1962 <u>TIME</u>: 1330 2330 SPONSOR: LRL

SITE: Johnston Island danger area 4° 50' N 149° 49' W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air, from Polaris missile

OPERATION DOMINIC -

Yukon

<u>LOCT</u> <u>GMT</u> <u>DATE</u>: 8 May 1962 8 May 1962 TIME: 0801 1801 SPONSOR: LRL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (parachute drop), over
Pacific Ocean

Mesilla

LOCT GMT DATE: 9 May 1962 9 May 1962

TIME: 0701 1701 SPONSOR: LASL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (free fall) over

Pacific Ocean

OPERATION DOMINIC -

Muskegon

LOCT GMT DATE: 11 May 1962 11 May 1962

1537

TIME: 0537 SPONSOR: LRL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (parachute drop), over

Pacific Ocean

OPERATION DOMINIC -

Sword

Fish

GMT DATE: 11 May 1962 11 May 1962

TIME: 1202

2002

SPONSOR: DOD

SITE: ~400 miles west of San Diego

31° 14.7' ± 0.3' N 124° 13.3' ± 0.3' W

SITE ELEVATION: Sea Level

DEPTH OF BURST:

WATER DEPTH: 17,100 ft

TYPE OF BURST AND PLACEMENT:

Underwater, from anti-

submarine rocket

REMARKS:

Figure 180 illustrates the growth and movement of the pool of radioactivity resulting from the Sword Fish test. The contours from D-day to D+6 days represent readings in mR/hr at 500 feet above the water surface.

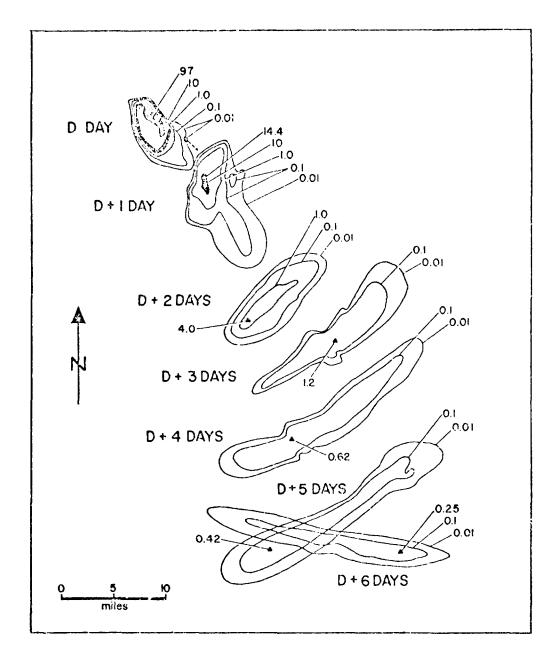


Figure 180 OPERATION DOMINIC - Sword Fish contours showing growth and movement of the pool of radio-activity from D-day to D+6 days. Contours values in mR/hr at the survey aircraft height of 500 feet

Encino

DATE: 12 May 1962 12 May 1962

TIME: 0702 1702

SITE: Christmas Island, GZ-12

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

Sponsor: LASL

TYPE OF BURST AND PLACEMENT:

Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

Swanee

LOCT GMT

<u>DATE</u>: 14 May 1962 14 May 1962 TIME: 0521 1521 SPONSOR: LRL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sca Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (parachute drop), over Pacific Ocean

OPERATION DOMINIC -

Chetco

LOCT GMT

DATE: 19 May 1962 19 May 1962 TIME: 0536 1536

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

SPONSOR: LRL

TYPE OF BURST AND PLACEMENT:

Air (parachute drop), over

Tanana

<u>LOCT</u> <u>GMT</u>

DATE: 25 May 1962 25 May 1962

TIME: 0608 1608

SPONSOR: LRL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (parachute drop), over

Pacific Ocean

OPERATION DOMINIC -

Nambe

<u>I.OCT</u> <u>GMT</u> DATE: 27 May 1962 27 May 1962

TIME: 0702 1702

SPONSOR: LASL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

A]ma

<u>LOCT</u> <u>GMT</u> <u>DATE:</u> 8 Jun 1962 8 Jun 1962

TIME: 0702

1702

SPONSOR: LASL

SITE: Christmas Island, GZ-15

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (free fall), over

Truckee

<u>LOCT</u> <u>GMT</u> <u>DATE</u>: 9 Jun 1962 9 Jun 1962 TIME: 0537 1537 SPONSOR: LRL

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (parachute drop), over
Pacific Ocean

OPERATION DOMINIC -

Yeso

<u>LOCT</u> <u>GMT</u> <u>DATE</u>: 10 Jun 1962 10 Jun 1962 TIME: 0601 1601

SPONSOR: LASL

SITE: Christmas Island, GZ-20

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (free fall), over
Pacific Ocean

OPERATION DOMINIC -

Harlem

<u>LOCT</u> <u>GMT</u> <u>DATE</u>: 12 Jun 1962 12 Jun 1962 TIME: 0537 1537 SPONSOR: LRL

SITE: Christmas Island, GZ-17

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (parachute drop), over
Pacific Ocean

Rinconada

<u>LOCT</u> <u>GMT</u> <u>DATE</u>: 15 Jun 1962 15 Jun 1962

TIME: 0600 1600

SITE: Christmas Island, GZ-17

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

SPONSOR: LASL

TYPE OF BURST AND PLACEMENT:

Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

Dulce

LOCT GMT SPONSOR: LASL

DATE: 17 Jun 1962 17 Jun 1962 TIME: 0600 1600

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (free fall), over

Pacific Ocean

OPERATION DOMINIC -

Fetit

LOCT GMT SPONSOR: LRL

DATE: 19 Jun 1962 19 Jun 1962

TIME: 0501 1501

SITE: Christmas Island, GZ-17

SITE ELEVATION: Sea Level

HEICHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (parachute drop), over

Otowi

<u>LOCT GMT</u>

<u>DATE</u>: 22 Jun 1962 22 Jun 1962

TIME: 0600 1600

SITE: Christmas Island, GZ-10

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

SPONSOR: LASL

TYPE OF BURST AND PLACEMENT:

Air (free fall), over

Pacific Ocean

OFERATION DOMINIC -

Bighorn

LOCT GMT

DATE: 27 Jun 1962 27 Jun 1962 TIME: 0519 1519

IME: 0519 1519 SITE: Christmas Island, GZ-30

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

SPONSOR: LRL

TYPE OF BURST AND PLACEMENT:
Air (parachute drop), over

Pacific Ocean

OPERATION DOMINIC -

Bluestone

LOCT GMT SPONSOR: LRL

DATE: 30 Jun 1962 30 Jun 1962
TIME: 0521 1521 SITE: Chirstmas Island, GZ-25

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (parachute drop), over

OPERATION DOMINIC - Star Fish Prime

<u>LOCT GMT</u> <u>SPONSOR:</u> DOD DATE: 8 Jul 1962 9 Jul 1962

TIME: 2200 0900 SITE: Johnston Island
16° 28' 06.32" N

16° 28' 06.32" N TOTAL YIELD: 1.4 Mt 169° 37' 48.27" W

SITE ELEVATION: Sea Level

HEIGHT OF BURST: 249 miles

TYPE OF BURST AND PLACEMENT:
High altitude, from Thor

missile

REMARKS:

This event was conducted as a part of the Fish Bowl Series.

OPERATION DOMINIC - Sunset

<u>LOCT</u> <u>GMT</u> <u>SPONSOR</u>: LASL

DATE: 10 Jul 1962 10 Jul 1962

TIME: 0633 1633 SITE: Christmas Island, GZ-17

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (free fall), over

Pamlico

LOCT GMT SPONSOR: LRL 11 Jul 1962 11 Jul 1962 DATE:

TIME: 0537 1537 SITE: Christmas Island, GZ-25

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (parachute árop), over

Pacific Ocean

OPERATION DOMINIC - Androscoggin

LOCT GMT SPONSOR: LRL DATE: 2 Oct 1962 2 Oct 1962

TIME: 0517 SITE: Johnston Island 1617 13° 38.5¹ N

172° 11.1' W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (parachute drop), over

Pacific Ocean

OPERATION DOMINIC - Bumping

SPONSOR: LRL

I.OCT GMI 6 Oct 1962 SITE: Johnston Island DATE: 6 Oct 1962 TIME: 0502 1602

14° 30' N 168° 15' W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (parachute drop), over

Chama

LOCT

SPONSOR: LASL

DATE: 18 Oct 1962 TIME: 0501

18 Oct 1962 1601

GMT

SITE: Johnston Island

14° 32' N 108° 44.7' W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

Air (free fall), over Pacific

0ce an

OPERATION DOMINIC - Check Mate

LOCT DATE: 19 Oct 1962

GMT 20 Oct 1962

SPONSOR: DOD

TIME: 2130

0830

SITE: Johnston Island

16° 04' 20.57" N 169° 36' 35.95" W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

High altitude, from XM-23

Strypi (Sergeant) missile

REMARKS:

This event was conducted as a part of the Fish Bowl Series.

OPERATION DOMINIC - Blue Gill Triple Prime

SPONSOR: DOD GMT26 Oct 1962

25 Oct 1962 DATE: SITE: Johnston Island TIME: 2259 0959

16° 24' 57.03" N 169° 36' 11.15" W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:

High altitude, from Thor missile

REMARKS:

This event was conducted as part of the Fish Bowl Series.

OPERATION DOMINIC - Calamity

DATE: 27 Oct 1962

LOCT GMT SPONSOR: LRL

27 Oct 1962 TIME: 0446 SITE: Johnston Island 1546 14° 31.1' N

168° 15.6' W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT: Air (parachute drop), over

OPERATION DOMENIC - Housatonic

SPONSOR: LRL

<u>DATE</u>: 30 Oct 1962 30 Oct 1962 TIME: 0501 1601

SITE: Johnston Island 13° 36.8' N 172° 13' W

SITE ELEVATION: Sea Level

HELGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
Air (parachute drop), over
Pacific Ocean

OPERATION DOMINIC -

King Fish

<u>LOCT</u> <u>GMT</u>

<u>DATE</u>: 1 Nov 1962 1 Nov 1962

TIME: 0110 1210

SPONSOR: DOD

SITE: Johnston Island 16° 06' 48.61" N 169" 40' 56.02" W

SITE ELEVATION: Sea Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
High altitude, from Thor
missile

REMARKS:

This event was conducted as a part of the Fish Bowl Series.

OPERATION DOMINIC - Tight Rope

<u>LOCT</u> <u>GMT</u> <u>DATE</u>: 3 Nov 1962 4 Nov 1962

TIME: 2030 0730

SPONSOR: DOD

SITE: Johnston Island

16° 42' 26.71" N 169° 32' 32.66" W

SITE ELEVATION: Sca Level

HEIGHT OF BURST:

TYPE OF BURST AND PLACEMENT:
High altitude, from NikeHercules missile

REMARKS:

This event was conducted as a part of the Fish Bowl Series.

APPENDIX A

Announced United States Nuclear Detonations

Yields are listed as: Low (less than 20 kt)
Intermediate (20 to 999 kt inclusive)
Low Megaton (one to several megatons).

Prior to October 1958, testing was conducted on an intermittent basis and each series of tests was designated by a series name, such as OPERATION CROSSROADS. The United States conducted no tests from October 30, 1958 to September 1961. After resumption of testing, tests were conducted year around and were listed by fiscal year. For example, all NTS tests during FY-1962, which ended June 30, 1962, were in the OPERATION NOUGAT series except for four surface tests (Little Feller I and II, Small Boy and Johnny Boy) designated DOMINIC II, which were a continuation of the DOMINIC I series conducted in the Pacific.

EVENT NAME	DATE (GCT)	LOCATION	TYPE	PURPOSE	YIELD RANGE
TRINITY FIRST TEST OF	07/16/45 An A-Bomb	ALAHOGORDO	TOWER	WEAPONS RELATED	19KT
MORLD WAR II FIRST COMBAT USE	08/05/45 JSE-HIROSHIMA	JAPAN	AIROROP	COMBAT	13 KT
MORLD WAR II 08/09/45 Second Combat USE-NAGASAKI	08/09/45 USE-NAGASAKI	JAPAN OPERATION CROSSROADS	AIROROP	COMBAT	23 KT
ABLE	94/02/90	BIKINI	AIROROP	WEAPONS RELATED	23 KT
BAKER	07/24/46	BIKINI OPERATION SANDSTONE	UM	WEAPONS RELATED	23 KT
X-RAY	04/14/48	ENIMETOK	TOWER	WEAFONS RELATED	37KT
YOKE	04/30/40	ENIWETOK	TOWER	WEAPONS RELATED	49KT
ZEBRA	05/14/48	ENIMETOK OPERATION RANGER	TOWER	WEAPONS RELATED	18KT
ABLE	01/27/51	NTS	AIROROP	WEAPONS RELATED	111
BAKER	01/28/51	NTS	AIRDROP	WEAPONS RELATED	BKT
EASY	02/01/51	NTS	AIRDROP	WEAPONS RELATED	1 K T
BAKER-2	02/02/51	NTS	AIRDROP	WEAFONS RELATED	987
FOX	02/06/51	NTS OPERATION GREENHOUSE	AIROROP	WEAFONS RELATED	22KT
900	04/07/51	ENIWETOK	TOWER	WEAPONS RELATED	
EASY	04/20/51	ENIWETOK	TOWER	WEAFONS RELATED	47KT
GEORGE	05/00/51	ENIWETOK	TOWER	WEAPONS RELATED	
ITEM	05/24/51	ENIMETOK OPERATION BUSTER-JANGLE	TOWER	WEAPONS RELATED	
ABLE	10/22/51	NTS	TOWER	WEAPONS RELATED	LESS THAN 0.1KT
BAKER	10/28/51	NTS	AIRDROP	WEAFONS RELATED	3.5KT
CHARLIE	10/30/51	NTS	AIROROP	WEAPONS RELATED	14KT
900	11/01/51	NTS	AIROROP	WEAFONS RELATED	21KT
EASY	11/05/51	NTS	AIRDROP	WEAFONS RELATED	31KT
SUGAR	11/19/51	NTS	SURFACE	WEAPONS RELATED	1.2KT

EVENT NAME	DATE (GCT)	LOCATION	TYPE	PURPOSE	YIELD RANGE
UNCLE	11/29/51	NTS OPERATION TUMBLER-SNAPPER	CRATER	WEAPONS RELATED	1.2KT
ABLE	04/01/52	NTS	AIRDROP	WEAPONS RELATED	1KT
BAKER	04/15/52	NTS	AIRDROP	MEAPONS RELATED	1KT
CHARLIE	04/22/52	NTS	AIRDROP	WEAFONS RELATED	31KT
900	05/01/52	NTS	AIRDROP	WEAPONS RELATED	19KT
EASY	05/07/52	NTS	TOWER	WEAFONS RELATED	12KT
FOX	05/25/52	NTS	TOWER	WEAPONS RELATED	11KT
GEORGE	06/01/52	NTS	TOWER	WEAPONS RELATED	15KT
МОН	06/05/52	NTS	TOWER	WEAPONS RELATED	14KT
		UPERALIUM IVI			
MIKE Experimental	10/31/52 Thermonuclear	ENIMETOK Device	SURFACE	WEAPONS RELATED	10.4MT
KING	11/15/52	ENIMETOK	AIRDROP	WEAPONS RELATED	500 KT
		OPERATION UPSHOT-KNOTHOLE			
ANNIE	03/11/53	SIN	TOWER	WEAPONS RELATED	16KT
NANCY	03/24/53	MTS	TOWER	WEAFONS RELATED	24KT
RUTH	03/31/53	NTS	TOWER	WEAPONS RELATED	0.2KT
DIXIE	04/06/53	NTS	AIRDROP	WEAFONS RELATED	11KT
RAY	04/11/53	NTS	TOWER	WEAPONS RELATED	0.2KT
BADGER	04/18/53	NTS	TOWER	WEAFONS RELATED	23KT
NOMIS	04/25/53	NTS	TOWER	WEAPONS RELATED	43KT
ENCORE	05/08/53	NTS	AIRDROP	WEAPONS RELATED	27KT
HARRY	05/19/53	NTS	TOWER	WEAPONS RELATED	32KT
GRABLE FIRED FROM 26	05/25/53 280MM GUN	NTS	N O O	WEAPONS RELATED	15KT
CLIMAX	06/04/53	HTS	AIROROP	WEAPONS RELATED	61KT
		OPERATION CASTLE			
BRAVO Experimental	02/28/54 Experimental Thermonuclear	BIKINI Device	SURFACE	WEAPONS RELATED	15MT

EVENT NAME	DATE (GCT)	LOCATION	TYPE	PURPOSE	YIELD RANGE
ROMEO	03/26/54	BIKINI	BARGE	HEAPONS RELATED	11 MT
KOON	75/90/70	BIKINI	SURFACE	WEAPONS RELATED	110 KT
UNION	04/52/54	BIKINI	BARGE	WEAFONS RELATED	6.9 MT
YANKEE	75/70/50	BIKINI	BARGE	HEAPONS RELATED	13.5 MT
NECTAR	05/13/54	ENIMETOK	BARGE	WEAPONS RELATED	1.69 MT
		OPERATION TEAPOT			
MASP	02/18/55	NTS	AIRDROP	WEAPONS RELATED	1KT
нотн	02/22/55	NTS	TOWER	WEAPONS RELATED	2KT
TESLA	03/01/55	NTS	TOWER	WEAPONS RELATED	7 K T
TURK	03/01/55	NTS	TOWER	WEAFONS RELATED	43KT
HORNET	03/12/55	NTS	TOWER	WEAFONS RELATED	4KT
956	03/22/55	NTS	TOWER	MEAFONS RELATED	8KT
ESS	03/23/55	NTS	CRATER	WEAPONS RELATED	1KT
APPLE-1	03/29/55	NTS	TOWER	WEAPONS RELATED	14KT
HASP PRIME	03/29/55	NTS	AIROROP	WEAPONS RELATED	3KT
4 H	04/06/55	NTS	AIRDROP	WEAPONS RELATED	3KT
POST	55/60/10	NTS	TOWER	WEAPONS RELATED	2KT
HET	04/15/55	NTS	TOWER	WEAPONS RELATED	22KT
APPLE-2	05/05/55	NTS	TOWER	MEAPONS RELATED	29KT
ZUCCHINI	05/15/55	NTS OPERATION WIGWAM	TOWER	WEAPONS RELATED	28KT
MIGMAN 05/14/55 29 DEGREESN-126 DEGREES	05/14/55 6 DEGREES W		ŭ.	WEAPONS RELATED	30KT
		OPERATION REDWING			
LACROSSE	95/01/50	ENIHETOK	SURFACE	WEAPONS RELATED	40 KT
CHEROKEE FIRST AIR DROP	05/20/56 BY U.S. OF A	BIKINI Thermonuclear Meapon	AIRDROP	WEAPONS RELATED	SEVERAL MT
Znnz	05/27/56	BIKINI	SURFACE	HEAPONS RELATED	3.5 MT
YUMA	05/27/56	ENIWETOK		WEAPONS RELATED	

EVENT NAME	DATE (GCT)	LOCATION	TYPE	PURPOSE	YIELD RANGE
ERIE	95/30/50	ENIMETOK	TOWER	WEAPONS RELATED	
SEMINOLE	95/90/90	ENIMETOK	SURFACE	WEAPONS RELATED	
FLATHEAD	06/11/56	BIKINI	BARGE	WEAFONS RELATED	
BLACKFOOT	06/11/56	ENIWETOK	TOWER	WEAPONS RELATED	
KICKAPOO	06/13/56	ENIMETOK		WEAFONS RELATED	
OSAGE	06/16/56	ENIHETOK	AIRDROP	WEAFONS RELATED	
INCA	06/21/56	ENIWETOK		WEAPONS RELATED	
DAKOTA	06/25/56	BIKINI	BARGE	WEAPONS RELATED	
HOHAWK	07/02/56	ENINETOK		WEAPONS RELATED	
APACHE	07/08/56	ENIMETOK	BARGE	WEAFONS RELATED	
NAVAJO	07/10/56	BIKINI	BARGE	HEAPONS RELATED	
TENA	07/20/56	BIKINI	BARGE	WEAPONS RELATED	5 MT
HURON	07/21/56	ENIWETOK	BARGE	WEAFONS RELATED	
		OPERATION PLUMBBOB			
BOLTZMAN	05/28/57	NTS	TOWER	WEAFONS RELATED	12KT
FRANKLIN	06/02/57	NTS	TOWER	WEAFONS RELATED	140TONS
LASSEN	06/05/57	NTS	BALLOON	WEAFONS RELATED	0.5 TONS
WILSON	06/18/57	NTS	BALLOON	WEAFONS RELATED	10KT
PRISCILLA	15/52/90	NTS	BALL 00N	WEAPONS RELATED	37KT
поор	15/50/20	NTS	BALLOON	WEAPONS RELATED	74KT
DIABLO	07/15/5	NTS	TOWER	WEAPONS RELATED	17KT
уони	.5/61/20	NTS	ROCKET	WEAPONS RELATED	ABOUT 2KT
KEPLER	07/24/5;	NTS	TOWER	WEAPONS RELATED	10KT
OWENS	07/25/5;	NTS	BALLOON	WEAPONS RELATED	9.7KT
STOKES	15/20/80	NTS	BALLOON	WEAPONS RELATED	19KT
SHASTA	08/18/57	NTS	TOWER	WEAPONS RELATED	17KT
OOPPLER	08/23/57	NTS	BALLOON	WEAPONS RELATED	11KT

DETONATIONS
NUCLEAR
STATES
UNITED
ANNOUNCED

EVENT NAME	DATE (GOT)	LOCATION	TYPE	PURPOSE	YIELD RANGE
FRANKLIN PRIME	08/30/57	SIN	BALLOOM	WEAPONS RELATED	4.7KT
SHOKY	08/31/57	NIS	TOWER	WEAPONS RELATED	44KT
GALILEO	09/02/57	NTS	TOWER	WEAPONS RELATED	11KT
WHEELER	15/90/60	NTS	BALLOON	WEAPONS RELATED	197 TONS
LAPLACE	15/90/60	NTS	BALLOOM	WEAPONS RELATED	1KT
FIZEAU	19/14/50	NTS	TOWER	WEAPONS RELATED	11KT
NEWTON	09/16/57	NTS	BALLOOM	WEAPONS RELATED	12KT
RAINIER FIRST TUNNEL	09/19/57 Emplacemen	NTS	TUNNEL	WEAFONS RELATED	1.7KT
WHITNEY	09/23/57	NTS	TOWER	WEAPONS RELATED	19KT
CHARLESTON	09/28/57,	NTS	BALLOON	WEAPONS RELATED	12KT
MORGAN	10/01/57	NTS	BALLOON	WEAPONS RELATED	BKT
		OPERATION HARDTACK I			
YUCCA 12 DEGREES 37	84/28/58 MIN N-163	DEGREES 01 MIN E	BALLOON	WEAPONS RELATED	
CACTUS	05/02/50	ENIMETOK	SURFACE	WEAFONS RELATED	18 KT
FIR	05/11/50	BIKINI	BARGE	WEAPONS RELATED	
BUTTERNUT	05/11/50	ENINETOK	BARGE	WEAPONS RELATED	
KOA	05/12/58	ENIWETOK	SURFACE	WEAFONS RELATED	1.37 HT
MAH00	05/16/58	ENIMETOK	MO	WEAFONS RELATED	
ногга	05/20/58	ENIMETOK	BARGE	WEAPONS RELATED	
NUTHEG	05/21/58	BIKINI	BARGE	WEAFONS RELATED	
YELLOWNOOD	05/56/58	ENIWETOK	BARGE	WEAPONS RELATED	
MAGNOLIA	05/56/58	ENIMETOK	BARGE	WEAFONS RELATED	
TOBACCO	05/30/50	ENIWETOK	BARGE	WEAPONS RELATED	
SYCANORE	05/31/50	BIKINI	BARGE	WEAPONS RELATED	
ROSE	06/02/58	ENIWETOK	BARGE	WEAFONS RELATED	
UMBRELLA	06/08/58	ENIMETOK	3	WEAPONS RELATED	

ANNOUNCED UNITED STATES NUCLEAR DETONATIONS

EVENT NAME	DATE (GCT)	LOCATION	TYPE	PURPOSE	YIELD RANGE
HAPLE	06/10/58	BIKINI	BARGE	WEAFONS RELATED	
ASPEN	06/14/58	BIKINI	BARGE	WEAPONS RELATED	
MALNUT	06/14/58	ENIMETOK	BARGE	WEAFONS RELATED	
LINDEN	06/18/58	ENIMETOK	BARGE	WEAPONS RELATED	
REDMOOD	06/27/58	BIKINI	BARGE	WEAPONS RELATED	
ELDER	06/27/58	ENIMETOK	BARGE	WEAFONS RELATED	
OAK	06/28/58	ENI WETOK	BARGE	HEAPONS RELATED	TH 6.8
HICKORY	06/59/58	BIKINI	BARGE	WEAPONS RELATED	
SEQUOIA	07/01/58	ENIMETOK	BARGE	WEAFONS RELATED	
CEDAR	07/02/58	BIKINI	BARGE	WEAPONS RELATED	
DOCHOOD	85/50/20	ENIMETOK	BARGE	WEAPONS RELATED	
POPLAR	07/12/58	BIKINI	BARGE	NEAPONS RELATED	
PISONIA	07/17/58	ENIMETOK		WEAPONS RELATED	
JUNIPER	07/22/58	BIKINI	BARGE	WEAPONS RELATED	
OLIVE	07/22/58	ENIMETOK	BARGE	WEAPONS RELATED	
PINE	07/26/58	ENIMETOK	BARGE	WEAFONS RELATED	
TEAK	08/01/58	JOHNSTON ISL AREA	ROCKET	WEAPONS RELATED	MEGATON RANGE
QUINCE	08/00/28	ENIMETOK		WEAFONS RELATED	
ORANGE	08/12/58	JOHNSTON ISL AREA	ROCKET	WEAFONS RELATED	MEGATON RANGE
FIG	08/16/58	ENIMETOR OPERATION ARGUS		WEAFONS RELATED	
ARGUS I ABOUT 300	08/27/58 MILES ALTITUDE	SOUTH ATLANTIC	ROCKET	WEAPONS RELATED	1-2KT
ARGUS II ABOUT 300	08/30/58 MILES ALTITUDE	SOUTH ATLANTIC	ROCKET	WEAPONS RELATED	1-2KT
ARGUS III ABOUT 300	III 09/06/58 ABOUT 300 MILES ALTITUDE	SOUTH ATLANTIC OPERATION HARDTACK II	ROCKET I	MEAFONS RELATED	1-2KT
EDDY	09/19/58	SHZ	BALLOON	WEAPONS RELATED	83 TONS

DETONATIONS
NUCLEAR
STATES
UNITED
ANNOUNCED

EVENT NAME	DATE (GGT)	LOCATION	TYPE	PURPOSE	YIELD RANGE
HORA	09/29/58	NTS	BALLOON	WEAPONS RELATED	ZKT
TAMALPAIS SLIGHT VENTING	10/08/58	NTS	TUNNEL	WEAPONS RELATED	72 TONS
QUAY	10/10/58	NTS	TOWER	WEAFONS RELATED	29 TONS
LEA	10/13/58	NTS	BALL OON	WEAPONS RELATED	1.4KT
HAMILTON	10/15/58	NTS	TOWER	WEAFONS RELATED	1.2 TONS
LOGAN	10/16/58	NTS	TUNNEL	WEAPONS RELATED	5KT
DONA ANA	10/16/58	NTS	BALLOON	WEAPONS RELATED	37 TONS
RIO ARRIBA	10/18/58	NTS	TOWER	WEAPONS RELATED	SNOT 06
SOCORRO	10/22/58	NTS	BALLOON	WEAPONS RELATED	6KT
WRANGELL	10/22/58	NTS	BALLOON	WEAPONS RELATED	115 TONS
RUSHMORE	10/22/58	NTS	BALLOON	WEAPONS RELATED	188 TONS
SANFORD	10/26/58	NTS	BALLOON	WEAFONS RELATED	4.9KT
DE BACA	10/26/58	NTS	BALLOON	WEAPONS RELATED	2.2KT
EVANS VENTING	10/29/58	NTS	TUNNEL	WEAPONS RELATED	55 TONS
HUMBOLDT	10/29/58	NTS	TOWER	WEAPONS RELATED	7.8 TONS
SANTA FE	10/30/58	NTS	BALLOON	WEAPONS RELATED	1.3KT
BLANCA SLIGHT VENTING	10/30/58	NTS	TUNNEL	WEAPONS RELATED	19KT
		OPERATION NOUGAT	SAT		
ANTLER	19/11/61	NTS	TUNNEL	WEAPONS RELATED	2.4KT
SHREW LOW YIELD MEANS	09/16/61 MEANS LESS THAN 20	NTS 20KT	SHAFT	WEAPONS RELATED	104
CHENA	10/10/61	NTS	TUNNEL	WEAPONS RELATED	LOW
HINK	10/29/61	NTS	SHAFT	WEAPONS RELATED	LOW
FISHER	12/03/61	NTS	SHAFT	WEAFONS RELATED	13.5KT
GNOME 12/10/61 MULTIPLE-PURPOSE EXPERIMENT 60-80 FT.HIGH	12/10/61 Se experiment	CARLSBAD IN SALT.FORMED CAVITY	SHAFT 160-170	PLONSHARE FT.DIAMETER	3.1KT

EVENT NAME	DATE (GCT)		LOCATION	TYPE	PURPOSE	YIELD RANGE
МАО	12/13/61	NTS		SHAFT	WEAPONS RELATED	0.43KT
RINGTAIL	12/11/61	NTS		SHAFT	WEAPONS RELATED	LOW
FEATHER	12/22/61	NTS		TUNNEL	MEAPONS RELATED	L 04
STOAT	01/09/62	NTS		SHAFT	WEAPONS RELATED	4.5KT
AGOUTI	01/18/62	NTS		SHAFT	WEAPONS RELATED	5.9KT
DORMOUSE	01/30/62	NTS		SHAFT	WEAFONS RELATED	LOW
STILLWATER	02/08/62	NTS		SHAFT	WEAPONS RELATED	2.7KT
ARMADILLO	02/09/62	NTS		SHAFT	HEAFONS RELATED	6.6KT
HARDHAT Granite	82/15/62	N T S		SHAFT	WEAFONS RELATED	5.9KT
CHINCHILLA	29/61/20	NTS		SHAFT	WEAPONS RELATED	1.8KT
CODSAW	02/19/62	NTS		SHAFT	WEAFONS RELATED	LOW
CIMARRON	02/23/62	NTS		SHAFT	HEAPONS RELATED	11.2KT
PLATYPUS	02/24/62	NTS		SHAFT	WEAPONS RELATED	LOW
PANPAS	03/01/62	NTS		SHAFT	JOINT US-UK	LOW
DANNY BOY CRATER DIAMETE	03/05/62 Meter 265 ft. DE	NTS DEPTH 84 F	FT. IN BASALT	CRATER	WEAFONS RELATED	0.42KT
ERMINE	03/06/62	NTS		SHAFT	WEAPONS RELATED	LOW
BRAZOS	03/08/62	NTS		SHAFT	WEAFONS RELATED	7.6KT
HOGMOSE	03/15/62	NTS		SHAFT	WEAPONS RELATED	104
HOOSIC	03/28/62	NTS		SHAFT	WEAPONS RELATED	3KT
CHINCHILLA II	03/31/62	NTS		SHAFT	WEAPONS RELATED	LOW
DORMOUSE II	29/50/50	NTS		SHAFT	MEAPONS RELATED	10KT
PASSAIC	29/90/50	NTS		SHAFT	WEAPONS RELATED	LOM
HUDSON	04/15/62	NTS		SHAFT	WEAPONS RELATED	LOW
PLATTE	29/11/10	NTS		TUNNEL	WEAPONS RELATED	1.7KT
DEAD	04/21/62	NTS		SHAFT	WEAPONS RELATED	LOW

EVENT NAME	DATE (GGT)	DATE (GCT) LOCATION FIT TESTS WEDE DESIGNATED ODEDATION DOMINIC	TYPE	PURPOSE	YIELD RANGE
ADOBE INTERMEDIATE M	04/25/62 CHRI MEANS 20 TO 1000 KT	CHRISTMAS ISL AREA	ÅIROROP	HEAPONS RELATED	INTERMEDIATE
AZTEC	84/27/62	CHRISTHAS ISL AREA	AIRDROP	WEAPONS RELATED	INTERMEDIATE
BLACK	04/27/62	STA	SHAFT	WEAPONS RELATED	LOW
ARKANSAS	05/02/62	CHRISTMAS ISL AREA	AIROROP	WEAPONS RELATED	LOW MEGATON
QUESTA	05/04/62	CHRISTHAS ISL AREA	AIRDROP	WEAPONS RELATED	INTERMEDIATE
FRIGATE BIRD Marhead in Mis	05/06/62 Ssile Launched	CHRISTMAS ISL AREA FROM POLARIS SUBMARINE	MISSILE	WEAFONS RELATED	
PACA	05/07/62	NTS	SHAFT	WEAFONS RELATED	ГОМ
YUKON	05/08/62	CHRISTHAS ISL AREA	AIRDROP	WEAPONS RELATED	INTERMEDIATE
HESILLA	05/09/62	CHRISTHAS ISL AREA	AIROROP	WEAPONS RELATED	INTERMEDIATE
MUSKEGON	05/11/62	CHRISTMAS ISL AREA	AIRDROP	WEAFONS RELATED	INTERMEDIATE
SWORDFISH ANTISUBHARINE	05/11/62 EASTERN ROCKET /ASROC/ SYSTEM	EASTERN PACIFIC / System proof test	UM	WEAPONS RELATED	HON
ENCINO	05/12/62	CHRISTMAS ISL AREA	AIRDROP	WEAFONS RELATED	INTERMEDIATE
AARDVARK	05/12/62	NTS	SHAFT	WEAPONS RELATED	38KT
SHANEE	05/14/62	CHRISTMAS ISL AREA	AIRDROP	WEAPONS RELATED	INTERMEDIATE
EFL	05/19/62	NTS	SHAFT	WEAPONS RELATED	LOW
CHETCO	05/19/62	CHRISTHAS ISL AREA	AIRDROP	WEAPONS RELATED	INTERMEDIATE
WHITE	05/25/62	NTS	SHAFT	WEAPONS RELATED	LOW
TANANA	05/25/62	CHRISTHAS ISL AREA	AIROROP	WEAPONS RELATED	101
NAMBE	05/27/62	CHRISTHAS ISL AREA	AIROROP	WEAPONS RELATED	INTERMEDIATE
RACCOON	06/01/62	NTS	SHAFT	WEAFONS RELATED	LOW
PACKRAT	06/06/62	NTS	SHAFT	WEAPONS RELATED	LOW
ALMA	29/00/90	CHRISTMAS ISL AREA	AIRDROP	WEAPONS RELATED	INTERMEDIATE
TRUCKEE	06/09/62	CHRISTMAS ISL AREA	AIROROP	WEAPONS RELATED	INTERMEDIATE
YESO	06/10/62	CHRISTHAS ISL AREA	AIRDROP	WEAPONS RELATED	LOW MEGATON
HARLEM	06/12/62	CHRISTHAS ISL AREA	AIRDROP	WEAPONS RELATED	INTERMEDIATE

EVENT NAME	DATE (GCT)	r) LOCATION	TYPE	PURPOSE	YIELD RANGE
DES MOINES	06/13/62	NTS	TUNNEL	WEAPONS RELATED	LOW
RINCONADA	06/15/62	CHRISTHAS ISL AREA	AIROROP	WEAFONS RELATED	INTERMEDIATE
DULCE	06/17/62	CHRISTMAS ISL AREA	AIRDROP	WEAPONS RELATED	INTERMEDIATE
PETIT	19/61/90	CHRISTMAS ISL AREA	AIRDROP	WEAFONS RELATED	L 04
DAMAN I	06/21/62	NTS	SHAFT	WEAPONS RELATED	LOW
010WI	06/22/62	CHRISTHAS ISL AREA	AIROROP	WEAPONS RELATED	INTERMEDIATE
BIGHORN	29/12/90	CHRISTMAS ISL AREA	AIRDROP	WEAPONS RELATED	MEGATON RANGE
HAYMAKER	29/12/90	NTS	SHAFT	WEAPONS RELATED	56KT
MARSHMALLOW DOD EVENT	06/28/62	NTS	TUNNEL	MEAPONS RELATED	ГОМ
BLUESTONE	06/30/62	CHRISTHAS ISL AREA	AIRDROP	WEAPONS RELATED	LOH MEGATON
SACRAMENTO	29/02/90	NTS ODEBATION STORAX	SHAFT	WEAPONS RELATED	LOW
SEDAN EXCAVATION EXPE	07/86/62 Eriment-Cr/	07/86/62 NTS EXPERIMENT-CRATER 1280 FT.DIAM 320 FT.	CRATER PLOWSHARE FT.DEEP-THERMONUCLEAR DEV.	PLOWSHARE CLEAR DEV.	100KT
LITTLE FELLERII SLIGHTLY ABOVE	87/87/62 Ground.	NTS DOMINIC II SERIES.	SURFACE	WEAPONS RELATED	ГОИ
STARFISH PRIME 07/09/62 HIGH ALTITUDE-450 KM	07/09/62 450 KM	JOHNSTON ISL AREA	ROCKET	WEAPONS RELATED	1.4 MEGATONS
SUNSET	07/10/62	CHRISTMAS ISL AREA	ATROROP	WEAPONS RELATED	INTERMEDIATE
PANLICO	07/11/62	CHRISTMAS ISL AREA	AIRDROP	WEAPONS RELATED	LOW MEGATON
JOHNNY BOY SLIGHTLY ABOVE	07/11/62 GROUND.	NTS DOMINIC II SERIES.	SURFACE	WEAFONS RELATED	0.5
MERRIMAC	07/13/62	NTS	SHAFT	WEAPONS RELATED	HO7
SMALL BOY SLIGHTLY ABOVE	07/14/62 Ground.	NTS DOMINIC II SERIES.	SURFACE	WEAPONS RELATED	ГОМ
LITTLE FELLER I 07/17/62 TROOP PARTICIPATION. SL	07/17/62 ATION. SLIC	'62 NTS SLIGHTLY ABOVE GROUND, DOMIN	SURFACE DOMINIC II SERIES.	WEAPONS RELATED	ГОМ
WICHITA	07/27/62	NTS	SHAFT	WEAPONS RELATED	LOW
YORK	29/52/90	NTS	SHAFT	WEAFONS RELATED	LOW
808AC	08/24/62	NTS	SHAFT	WEAPONS RELATED	LOW

ANNOUNCED UNITED STATES NUCLEAR DETONATIONS

EVENT NAME	0ATE (GCT)	_	רטכי	LOCATION	z	TYPE	PURPOSE	YIELD RANGE
HYRAX	09/14/65	•	NTS			SHAFT	WEAFONS RELATED	LOW
PEBA	29/02/60	-	NTS			SHAFT	WEAFONS RELATED	LOW
ALLEGHENY	29/52/60	-	NTS			SHAFT	HEAFONS RELATED	LOW
ANDROSCOGGIN	10/02/62	•	JOHNSTON ISL AREA	181	AREA	AIRDROP	WEAPONS RELATED	INTERMEDIATE
MISSISSIPPI	10/05/62	-	NTS			SHAFT	WEAFONS RELATED	110 KT
BUMPING	10/06/62	•	JOHNSTON ISL AREA	ISL	AREA	AIRDROP	WEAPONS RELATED	L 0 W
ROANOKE	10/12/62	-	NTS			SHAFT	WEAPONS RELATED	гом
СНАМА	10/18/62	,	JOHNSTON ISL AREA	ISL	AREA	AIROROP	WEAPONS RELATED	LOW MEGATON
BANDICOOT	10/19/62	_	NTS			SHAFT	WEAPONS RELATED	LOW
CHECKMATE HIGM ALTITUDE	10/20/62 - TENS OF KM	X X X	JOHNSTON ISL	ISL	AREA	ROCKET	WEAPONS RELATED	LOW
BLUEGILL 3PRIME HIGH ALTITUDE	10/26/62 - TENS OF KH	, SHX	JOHNSTON ISL	ISL	AREA	ROCKET	WEAPONS RELATED	SUBMEGATON
SANTEE	10/27/62	•	NTS			SHAFT	WEAPONS RELATED	LOW
CALAMITY	10/27/62	•	JOHNSTON ISL	ISL	AREA	AIROROP	WEAPONS RELATED	INTERMEDIATE
HOUSATONIC	10/30/62	•	JOHNSTON	ISL	AREA	AIROROP	NEAPONS RELATED	MEGATON RANGE
KINGFISH HIGH ALTITUDE	11/01/62 - TENS OF KM	KHS	JOHNSTON	ISL	AREA	ROCKET	WEAPONS RELATED	SUBMEGATON
TIGHTROPE HIGH ALTITUDE	11/04/62 - TENS CF KH	KHS	JOHNSTON ISL	ISL	AREA	ROCKET	WEAPONS RELATED	FOM
ANACOSTIA Device develop	11/27/62 IPMENT	-	NTS			SHAFT	PLOWSHARE	ГОМ
TENDRAC	12/07/62	•	NTS			SHAFT	JOINT US-UK	rom
MADISON	12/12/62	-	NTS			TUNNEL	WEAFONS RELATED	LOW
NUMBAT	12/12/62	-	NTS			SHAFT	WEAPONS RELATED	רסא

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Armed Forces Radiobiology Research Institute Defense Nuclear Agency National Naval Medical Center 4 cy ATTN: Director

Assistant Secretary of Defense Public Affairs

Assistant Secretary of Defense Manpower Reserve Affairs & Logistics

Assistant Secretary of Defense Health Affairs

Assistant Secretary of Defense Legislative Affairs

Assistant to the Secretary of Defense Atomic Energy

Defense Advanced Rsch. Proj. Agency ATTN: Director

Defense Documentation Center 12 cy ATTN: DD

Defense Nuclear Agency

ATTN: DDST ATTN: STSP

ATTN: VLWS 2 cy ATTN: Director

2 cy ATTN: BA 2 cy ATTN: PAO

4 cy ATTN:

GC 51 cy ATTN: TITL

Deputy Asst. Secretary of Defense Energy, Environment & Safety ATTN: G. Marienthal

Commander Field Command Defense Nuclear Agency

ATTN: FCTMOT ATTN: FCPR ATTN: FCPRA

Chief Field Command Defense Nuclear Agency Livermore Division ATTN: FCPRL, L-395

Chief Field Command Defense Nuclear Agency Los Alamos Branch

Undersecretary of Def. for Rsch. & Engrg. Department of Defense $\,$ ATTN: P. Winter

Director Interservice Nuclear Weapons School

DEPARTMENT OF THE ARMY

Deputy Chief of Staff for Rsch., Dev. & Acq. Department of the Army ATTN: DAMA-CSS-N

Commander Harry Diamond Laboratories Department of the Army 3 cy ATTN: DELHD-N-CC

Office of the Chief of Staff Department of the Army ATTN: DACS-DMA, D. Way

U.S. Army Ballistic Research Labs. 2 cy ATTN: DRDAR-BLB, J. Maloney

Commander U.S. Army Nuclear & Chemical Agency

Commandant U.S. Army Ordnance & Chemical Center and School ATTN: H. Whitten

DEPARTMENT OF THE NAVY

Commandant Marine Corps Department of the Navy 2 cy ATTN: J. McNabb

Commander Naval Ocean Systems Center

Commander Naval Sea Systems Command ATTN: SEA-08, M. Miles

Officer-in-Charge Naval Surface Weapons Center White Oak Laboratory

Commanding Officer Naval Weapons Evaluation Facility

Navy Nuclear Test Personnel Review 5 cy ATTN: J. Buckley

Commander-in-Chief U.S. Atlantic Fleet

DEPARTMENT OF THE AIR FORCE

Air Force Institute of Technology Air University
ATTN: ENP, C. Bridgeman

Air Force Nuclear Test Personnel Review 4 cy ATTN: Commander