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ABSTRACT

Project 2.7a was an outgrowth of Project 2.7, the genesis of which is described in the
Project 2.7 report, Reference 1. During the 2.7 surveys, samples of marine organisms
of the deep sea were collected by Scripps Institution of Oceanography (SIO) and were later
analyzed by SIO and the U.S. Naval Radiological Defense Laboratory (NRDL).

It was the objective of Castle 2.7a to ascertain and to report on the general relation-
ship pertinent to the uptake of fission products by the marine organisms collected during
the 2.7 survey in order to form a background for more extensive tests on Operation
Wigwam. Gross beta activities, beta absorption curves and gamma spectra were analyzed,
after identification of the organisms. A radiochemical analysis was performed by NRDL.

It was found: (1) that marine organisms concentrate activity from fallout fission pro-
ducts in the water by factors of the order of 1,000, (2) that the partition of fallout fission
products in the ocean is profoundly influenced by biological processes and that a purely
physical model is inadequate to predict distribution, (3) that the feeding mechanism of
the organism does not clearly determine the amount of activity assimilated, (4) that there
is evidence of fractionation of isotopes by different organisms, and (5) that there is some
evidence that finely dispersed activity is retained more or less proportionally with the
dry weight of the organism.



PREFACE

Much time has passed since the Castle Operation when the effects of fallout upon the open
sea were first studied by oceanographic methods. More recent field tests have contributed
far more data concerning the radioactive contamination of marine organisms than could be
collected during the hastily outfitted cruise of the U.S.S. SIOUX following Castle, Shot 5.
Nevertheless the two small samples of plankton that were collected by the SIOUX were
sufficiently impressive to influence the thinking of people making preparations for later
operations, and, in particular, the thinking of people involved in the problem of oceanic
disposal of atomic wastes.

Today these specimens themselves do not appear so spectacular, nor have some of
the hypotheses that guided their analyses been completely substantiated.

It is now common knowledge that marine organisms are notorious concentrators of
radioactive debris from nuclear detonation; and biologists, radiochemists and oceanographers
have acquired enough interest and experience to carry out well-organized and integrated
research on the problems. For these reasons the original interim report has been re-
written and some of the conclusions have been left out. Critical original experimental
data from field expeditions retains its value almost indefinitely, however, and this paper
reports the first direct in situ evidence of the profound influence of deep sea organisms
on the partition of radioactive debris from atomic weapons, and directly demonstrates the
inadequacy of a model that accommodates only the physical processes of mixing, advection,
etc. This fact justifies a final report.

The authors wish to point out that proper credit has not yet been directed to certain
people who were largely responsible for the original conception of the expedition and
outfitting of it so that it could be successful. It was Professor John D. Isaacs who, in
fact, proposed that plankton samples be taken and who located and acquired the special
net that was needed, as well as the other oceanographic gear, and it was f{o a great degree
the scientific and administrative experience of Professor Isaacs and of Dr. Edward Martell
that pulled the project together as an operational unit.

It is almost impossible to be sure that proper credit is given to everyone who con-
tributed to this special aspect of the Castle project. The radioanalyses of Table 2 were
done at NRDL by Doctors R.W. Rinehart, J.A. Seiler, W.H. Shipman, and others and
the data transmitted to SIO by Dr. L.B. Werner with valuable comments.

Dr. Edward D. Goldberg was responsible for the beta and gamma measurements
shown on Table 1 and Figures 1, 2, and 3; the beta analyses were carried out at SIO but
the gamma spectra were measured at NRDL.

Dr. Martell reviewed the preliminary report and demonstrated that these early, scanty,
experimental findings could hardly justify the conclusions expressed. The authors con-
curred and the report has been revised extensively.
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RADIOACTIVITY OF OPEN-SEA PLANKTON SAMPLES

BACKGROUND AND OBJECTIVES

Immediately following Shot 5 of Operation Castle in 1954 the Fleet Tug U.S.S. SIOUX
manned by scientific personnel from NRDL and the Scripps Institution of Oceanography
made a four-day long cruise through the oceanic area adjacent to Bikini. The extensive
measurements of the pattern of gamma activity in the sea water were made and are the
subject of a comprehensive report, Reference 1; and during the cruise, at two different
stations, a net was lowered and a sample of the zooplankton population was taken. These
zooplankton samples exhibited an intense concentration of gamma activity over that of the
surrounding water. This was immediately apparent from the effect that their presence in
the specimen jars had upon a portable gamma indicator, in spite of relatively high back-
ground aboard the ship.

The two bottles of plankton were immediately sent to NRDL and SIO for classification
and analysis by biologists and radiochemists. The outcome is the subject of this report.

PROCEDURE

The samples were collected with a standard silk zooplankfon net, having a diameter
of one meter, using the technique customary in biological oceanography. The net was
lowered into the water at 50 meters per minute until 200 meters of wire had run out. The
wire was then hauled in at 20 meters per minute. This technique collects the organisms
from roughly 500 cubic meters of water, including all depths between 0 and about 140
meters.

The samples were received at SIO about one week after collection and were then

further preserved with formalin; most of the organisms were in good condition. Biological
identification of the organisms was made at SIO.

Objectives of the Laboratory Studies. How fission products are distributed in the
ocean after a fallout is of importance to those planning weapons tests and disposal of
atomic wastes at sea. The distribution within the marine biosphere is of special impor-
tance, because (1) certain marine zooplankton are known to migrate vertically and there-
fore could be significant vectors of fallout activity through the stable layers where water
transport is much reduced; (2) the activity in organisms is in a critical material, potential
foodstuffs. Among other things, it was decided to investigate the possibility that an
organism’s activity was influenced by its feeding habits.

General Character of Biological Samples. Nets of the type used, pass most of the
phytoplankton and very smallest zooplankters. Most of what is caught is of visible size.
Many of the small animals display their ability for movement by darting about the collec-
tion jar. Certain large transparent passive gellatenous animals can be seen to contain
smaller organisms, alive or dead. Since it is known that zooplankton depend ultimately
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upon the minute primary plants of the sea, it is certain that any catch of zooplankton must
include also whatever phytoplankton exist as undigested fodder.

Classification of Organisms. ~Marine zoologists are able to recognize amongst the
zooplankton several characteristic modes of acquiring food, and it was found possible to
separate the Castle catch into three sorts. The resulting splits admittedly were small,
but this was all that the catch afforded.

The classifications generally used by biologists are as follow:

(S) Setal; feeding with the aid of protruding bristles (setae),
(R) Rapacious; seizing food agressively, and
(T) Tentacular; gathering food by means of tentacles.

Characteristics of the Sea Water Masses Involved. Although the two samples were
collected many miles apart, there is oceanographic evidence that the samples came from
similar water masses in the sense that no differences in the type of zooplankton might be
expected. However, it has been estimated that fallout arrived at Station 6 when this water
was about 180 miles from the shot center, whereas the fallout arrived at Station 8 when
this water lay about 80 miles from ground zero. Thus the fallout particles at Station 6
likely were finer than those at Station 8. Both points lay more or less along the axis of
the computed fallout pattern, Reference 1.

The gamma intensity measured by a Geiger detector (submerged but near the surface)
at Station Y - 8 was roughly 10 times as high as the intensity similarly measured at
Station Y - 6. These and other measurements indicate that the Sample Y - 8 came from
water about 10 times more active than the Sample Y - 6.

There is oceanographic evidence that substantially only Shot 5 contributed to the con-~
tamination of the waters from which each sample was taken.

RESULTS

Gross Beta Activity Measurements. Gross beta activities of each type of feeder are
compared in Table 1. An end-window Geiger-Muller counter having a window thickness
of 1.4 mg/cm? was used. The organisms vary widely in size and in weight so that activity
has been expressed in Table 1 in terms of wet weight as well as in terms of dry weight
of organism.

Beta Absorption Analyses. Figure 1 compares the activities from three feeding types
in terms of attenuation caused by aluminum filters interposed in front of the counter. A
setal feeder and a rapacious feeder were studied as well as samples of fish larvae whose
feeding habit was not classified. The types are identified in Table 1.

Beta Decay Characteristics. Figure 2 compares the decay of beta activities in four
kinds of plankton; the curves were not normalized in percent of initial activity because
their slopes are very similar and their superimposition would cause a confusing graphical
picture.

Gamma Spectra. The gamma spectra of three selected plankton were obtained in the
70-channel gamma pulse analyser of NRDL and two are shown in Figure 3 along with the
instrumental background spectrum. It will be noted in Table 1 that both organisms are
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Figure 1 Beta-absorption curve.

of the setal feeding type. The third biological sample consisting of rapacious copepods
produced a spectrum indistinguishable from background.

Radiochemical Analyses. Table 2 lists the results of the radiochemical analyses
carried out at NRDL (Reference 2), and displays certain individual activities in terms of
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certain activity totals. This tabulation also is the result of the initial interest in the
matter of how the various nuclides are distributed in sea water containing plankton.

The total weights and volumes of the portion of the haul analyzed here was not
reported but they were contained in specimen bottles holding about 200 ml water with
plankton that, it is believed, would have a “drained volume” of about 1 to 2 ml. There-
fore in Table 2 the total activity per ml volume is of the order of 1,000 times higher in

12



BACKGROUND |

0 [
” [\'\V/\
$300__/ A
-] 7 a¥ s
5 100 \’\—\/\/\/\ - ]

HERBIVOROUS

/‘ COPEPODS
5 /

[0

Gamma Gounts

)

D

50 EUPHAUSIID
- ]\“ STYLOCHEIRON
£ \/\
3
? o V7
P/
o -\k\‘"\f\/\\/\/’f’—\\'\—\
5 1 2 3 a 5 5 7 8 9

Photon Energy in mev

Figure 3 Gamma energy spectra

the solid fraction (drained zooplankton) than in the filtrate. More details are given in
Table 2 which lists the ratio of the specific activity of each fraction of the organic material
to that of the supernatent liquor.

The analyses of sea water samples taken in this area are still considered classified
data and cannot be discussed here in such a way as to give more information concerning
the concentrating ability of plankton to fallout materials. Furthermore, the analysis of
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the samples of water taken in this area was reported in terms of gamma activity making
valid comparisons with Table 2 difficult.

Table 2 compares the compositions of the radioactivity retained by two species of
marine organisms that were selected from the solid fraction mentioned in Table 2. Even
from the meager data shown here, it can be seen that there are significant variations in
the amounts and kinds of activity retained.

State and Size of Fission Particles in Sea Water. Table 3 is taken from earlier
laboratory experiments at NRDL by Greendale and Ballou (Reference 3) where fission
products were vaporized in sea water. The four nuclides listed display some tendency to

TABLE 1 BETA ACTIVITIES OF ORGANISMS FROM CASTLE®*
8 - Setal feeders, R - Rapacious feeders, T - Tentacular feeders, Parens ~ Estimated values.

Activity Activity Aoctivityg
Feedi) tal
Sample eeding Organism No. AT::lvity per W:Jieg;tht WZ;yht ¢/min/gm  c¢/min/gm
Typ Organism Wet Weight Dry Weight
¢/min mg mg
Y-8 s Herbivorous copepods 10 8,119 920 24.9 1.5 3.7 x 108 6.1 x 10%
Collected (Calanus) adult
1500 s Herbivorous mixed 21 4,465 214 {75.0) 45 0.60 0.99
9 May Calanoid copepods
1954 s Stylocheiron (Euphausiid) 10 6,143 614 17.8 2.1 3.4 2.9
R Rapacious copepods aduit 10 5,259 526 15.8 1.2 3.3 4.4
R Rapacious copepods 10 2,968 297 8.8 1.5 3.3 2.0
R Sagitta 12 - 18 mm 10 6,127 613 16.8 31 3.6 2.0
R Sagitta 10 - 12 mm 10 3,248 325 9.8 1.3 3.3 2.5
T Siphonophore piece 1 245 245 3.2 0.2 0.77 1.2
t Lucifer 7 mm 4 1,474 369 5.3 0.2 4.6 7.4
1 Fish Larva 1 1,258 1,258 4.0 11 3.2 1.1
t Polychaete fragment —_ 2,272 2,272 6.3 1.1 3.6 2.1
{Syllid; 25 mm
T Pieces of algal detritus -—_ 722 —_ 8.0) 0.72 0.90 1.0
Y-6 8 Copepods, Pleuromamma 10 219 22 (3.5) 0.22 0.63 1.0
Collected S Ostracoda, small 8 1,122 140 (11) 1.1 1.0 1.0
2400 S Copepods, Pleuromamma 10 3,635 363 (61) 3.7 6.0 0.98
7 May adult
1954 S Euphausiids, 3.9 mm 2 2,063 1,027 (20) 2.06 1.0 1.0
R Copepods, rapacious 10 328 33 3) 0.33 1.1 1.0
R Sagitta 5 ~ 15 mm 10 450 45 2.3) 0.45 2.0 1.0
R Copepods, rapacious 10 537 54 ) 0.54 0.90 1.0
R 1 Phronima 7 mm and 2 235 118 {2) 0.2 1.2 1.2
1 amphipod 2 mm
R Copepods, Corycaeus 25 223 9 2.5) 0.22 0.90 1.0
T Siphonophore pieces —_ 340 —_ (5.0 0.31 0.68 1.1
T Flocculent detritus — 4,757 —_ (50) 4.8 0.95 1.0

*Counts reduced to time of counting, 22 May 1954.
t Feeding type unknown.
$ Efficiency of the Beta Counter was about 14 percent.

segregate between three states of dispersal; however, it must not be inferred from these
laboratory data alone that in the case of fallout into the sea and in the presence of living
organisms these elements would be permanently partitioned in the manner tabulated.
Moreover, a living organism might possess an affinity for activity in quite a different
kind and degree than would the same organism dead.

Table 3 does not indicate the physical state of barium, but from its chemical and
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physical properties one would expect it to behave much like strontium and some indication
of this 18 shown in Table 2.

It is known that the size of fallout particles are related to the distance from the
explosion at which the fallout occurs; and that the mean particle size in general decreases
as distance increases. It is most likely therefore that the particles arriving at Station Y - 8
(80 miles from ground zero) were larger than those arriving at Station Y - 6 (180 miles
from ground zero at the time of arrival). However, no direct measurements were made,
and numerical estimates of particle size require extensive qualification beyond the scope
and classification of this paper.

DISCUSSION

In Table 1 it will be noted that each of the classes as well as each type of organism
in Sample Y - 6 shows the remarkably similar specific activity when referred to dry

TABLE 2 ANALYSIS AND COMPARISONS

Fraction Gross Activity Rare Earths  Balll  grit.s0 zr® Nb¥  Ryl®d. 08 Undetermined

Radiochemical Analysis of Separated Fractions of Samples Y - 8, ¢/min of Beta activity

Water* 82,500 3,530 1,780 1,600 890 840 33,900 39,960
(410)1 81 (4.5)1

Solid Fractionf 320,000 97,000 640 80 69,300 29,000 74,000 49,980
(320,000) (80)1 (69,0001

Total 402,500 100,530 2,420 1,680 70,190 29,840 107,900 89,940

Percent of Total Activity Contributed by Separated Fractions of Sample Y - 8
Water 20.5 0.88 0.44 0.40 0.22 0.21 8.43 9.92
Solid Fraction 79.5 24.1 0.16 0.02 17.2 7.20 18.4 12.42

Apparent Specific Concentration Factors of Organic Material Over Supernatent Water,
(¢/min/gm)/(c/min/gm)

780 5,500 70 10 15,000 6,800 440 —_

Comparison of the Compositions of the Activity Retained in Two Selected Organisms from
Sample Y - 8. (Activity given relative to total for each organism, in
percent)

Copepods (mixed) —_ 23.8 0.26 0.17 —_ —_ —_ 75.7
Sagitta (robusta) — 40.8 1.2 0.60 — —_ — 57.4

* Filtered through sintered glass.

7 Solid fraction retained by filter (mostly inorganic remains).

{ Approximate specific activity ¢/min/gm; i.e. assuming 200 ml supernatent and 1 gram wet
plankton in the specimen.

weight (Column 10); whereas no comparable congistancy appears in the activities of the
components of Sample Y - 8. This inconsistancy possibly is related to the difference in
size of the fallout particles at the two ranges.

Because of the large variation in size, and presumably therefore also in food con-
sumption, it is unconvincing to compare activities of individuals of quite different sizes.
Amongst the possible reference parameters in the data, dry weight would appear to offer
the best reference for such comparisons as are bheing made here. However, it is possible
that organisms may share activities in the preserving bottle, and if this were true, dried
specimens having properties quite different in life might appear the same in the dry weight
basis. This type of sharing is, of course, no less interesting but obscures the vital
effects. There appears no way to avoid this difficulty entirely unless biological classifi-
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cations were carried out immediately. Experience shows that this is impractical on
board ship. It is difficult, however, to visualize the sharing process restricted to one
sample and not the other, and, in addition, extremely difficult to conceive of a mechanism
that conirols the sharing on a dry weight basis, rather than on wet weight, total surface
or some other parameter. The remarkably consistant results of activity on a dry weight
basis, of one sample, leads one to suspect that the uptake and retention of radionuclides
from fine fallout is directly related to the anhydrous weight of the organism throughout a
wide range of water content.

Certain of the Y — 8 zooplankton types are roughly 5 times as active, specifically, as
are similar organisms in the Y - 6 catch. Increase of this sort could have been expected
since the Y - 8 water mass was found by field gamma measurements to have been (Refer~

TABLE 3 THE PHYSICAL STATE OF FISSION PRODUCT ELEMENTS
IN SEA WATER FOLLOWING AN UNDERWATER
VAPORIZATION (From Reference 2)

Physical State
Ionic Colloidal Particulate

Element

pet pet pet

10
96
100
95
95

Sr
Zr

@

OO =0
LS I R )

Ru
Ce

ence 1) roughly ten times more radioactive than the Y - 6 and also because the Y - 8
organisms were exposed roughly twice as long to the contaminated water as those of the

Y - 6 samples. However, there is no exact proportion exhibited between resulting activity,
and time multiplied by exposure activity; this too may be entirely the result of the presence
of large particles in the Y - 8 water as discussed above.

Table 2 illustrates again that radio nuclides of zirconium and niobium are likely to
be concentrated upon solid suspended particles especially on living organic materials.

The same thing is seen on land where these particles collect on tree leaves and on carpet
dust. No analyses were made during this early study of the sea water in these neighbor-
hoods that would lead to an absolute estimate of the radiostrontium in the sea itself. Only
gamma analyses were made of the water samples taken in this vicinity. Therefore it is
not possible to estimate what affinity the organisms have toward strontium in comparison
with any other radionuclides.

Figure 3 illustrates that two different setal feeders, namely the herbivorous copepod
and the euphausiid Stylocheiron, exhibit a different affinity for gamma emitters. The
former show a strong spectral peak of energy between 0.49 Mev and 0.54 Mev, while the
latter shows a broad peak between 0.65 Mev and 0.85 Mev. The sample of rapacious
copepods showed no significant peak above background. Thus there is no apparent rela-
tionship between feeding method and activity whereas there is an indication that two species
within the setal feeding class behave quite differently regarding the kind of activity retained
in a preserved sample.

From Figure 1 it can be seen that the beta energles of a setal, rapacious and an
unclassified type are similar whereas the ratios of the beta to gamma energies are some-
what different. The latter is the only strong correlation between feeding type and affinity
to active material.

The curves of beta decay between 10 and 60 days shown in Figure 2 can acarcely be
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distinguished. The mean coefficients all lie between 1.6 and 1.9 and unclassified biological
types vary more than do classified types.

CONCLUSIONS

Open-sea marine plankton can concentrate fallout activity strongly and therefore
should be included in fallout transport considerations and in plans for disposal of atomic
waste. This concentration is especially significant because it appears in an organic food.

There is evidence from both beta and gamma analyses that certain plankton types
have affinities for specific isotopes.

The radioanalyses of the first two samples of contaminated oceanic zooplankton has
not demonstrated that there exists a simple relationship between the affinity of a class
of plankton toward radioactivity, and the size of food it apparently prefers to eat. There
is more variability within the classes than between these classes.

Oceanic zooplankton appear to be very effective concentrators of materials that are
likely to be available in a particulate form, but they may concentrate certain other
materials also, such as radiostrontium which is more likely to be in ionic form.

There is some evidence that the retention of finely dispersed activity varies more
or less proportionally with the organism’s dry weight over a considerable range in body
size, surface area, and water content.
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